REFERENCE USn ONLY.

REPORT NO. DOT-TSC-0ST-78-19
ﬂ

JOINT COST, PRODUCTION TECHNOLOGY AND
OUTPUT DISAGGREGATION IN REGULATED MOTOR CARRIERS

Russell C. Cherry

U.S. Department of Transportation
Research and Special Programs Administration
Transportation Systems Center
Cambridge MA 02142

NOVEMBER 1978

INTERIM REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC
THROUGH THE NATIONAL TECHNICAL
INFORMATION SERVICE, SPRINGFIELD,
VIRGINIA 22161

Prepared for

U,S, DEPARTMENT OF TRANSPORTATION

OFFICE OF THE SECRETARY
0ffice of the Assistant Secretary for
Policy, Plans and International Affairs
Washington DC 20590



NOTICE

This document is disseminated under the sponsorship
of the Department of Transportation in the interest
of information exchange. The United States Govern-
ment assumes no liability for its contents or use
thereof.

NOTICE

The United States Government does not endorse pro-
ducts or manufacturers. Trade or manufacturers'’
names appear herein solely because they are con-
sidered essential to the object of this report.




Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

DOT-TSC~0ST~78-19

4. Title and Subtitle 5. Report Date
JOINT COST, PRODUCTION TECHNOLOGY AND OUTPUT November 1978
DISAGGREGATION IN REGULATED MOTOR CARRIERS 6. Performing Orgonization Code
8. Performing Organization Report No.
7. Authorls)
Russell C. Cherry DOT-TSC-0ST-78-19
9. Performing Orgenization Name and Address 10. Work Unit No. (TRAIS)
U.S. Department of Transportation 0P812/R9805
Research and Special Programs Administration 11. Contract or Gront No.
Transportation Systems Center
Washington DC 20590 13. Type of Report and Period Covered
12. Sponsoring Agency Nome and Address i Interim Report
U.S. Department ot Transportation
Office of the Secretary 1965-1974
Office of the Assistant Secretary for 14, Sponsoring Agency Code

Policy, Plans and International Affairs
—15 -Washington DC 20590

16. Abstract This study uses a sample of 252 Class I Instruction 27 Motor Carriers
(Instruction 27 carriers earned at least 75 percent of their revenues from intercity
transportation of general commodities over a three year period, the ICC requires that
these carriers report a set of supplemental data - such as TL and LTL revenues) of
General Flight that existed continuously during the period 1965-1974 to estimate a
long run cost function for the regular route, general freight section of the motor
carrier industry. The functional form of the estimated equation belongs to the class
of flexible, second order approximations to any cost function that are referred to as
transcendental logarithmic or "translog' functions. This class of functions does not
make any prejudgments about the proper functional form, or the nature of the economic
technology that motor carriers use to produce output; the functions may be derived
from a Taylor's series expansion. The output of the industry was disaggregated into
four distinct types and inputs were disaggregated into nine classes. The outputs are:
1) truck load ton-miles; 2) less-than-truck load ton miles; 3) pick up and delivery
tons per hour and 4) terminal-platform tons. The inputs for which prices were
included in the cost function are: 1) labor-salaried, clerical and other; 2) labor-
linehaul; 3) labor-pickup and delivery and terminal platform; 4) other imputs not
elsewhere classified; 5) purchased transportation; 6) owner-operators; 7) materials;
8) fuel, and 9) capital. The estimated cost function shows that there are no
economies of scale in the domains for which the function was estimated, and that the
usual representation of cost, using a Cobb-Douglas or CES function, is a serious
misspecification because the true underlying function is non-separable and therefore

the composition of output is g function of the level of factor prices

17. Key Words 18, Distribution Statement

Motor carrier cost DOCUMENT IS AVAILABLE TO THE PUBLIC
THROUGH THE NATIONAL TECHNICAL
INFORMATION SERVICE, SPRINGFIELD,
VIRGINIA 22161

19. Security Classif. (of this report) 20. Securlty Classit. (of this page) 21. No. of Pages | 22, Price
Unclassified Unclassified 138

Form DOT F 1700.7 (8-72) Reproduction of completed page autherized






FOREWORD

This report consists of six sections, the first of which is a
review of the theory of the firm that applies to this particular
problem. Some of this material is sufficiently new that it has
not yet found its way into the commonly used price theory text-
books, although it is taught in most major graduate schools. This
section is intended to serve as a bridge between the professional
literature in economics, and persons in government and industry to
whom this material is potentially important. Those familiar with

this material may wish to proceed to Sections 4. and 5.

This model of the supply side of the motor carrier industry
will allow the government to evaluate the effects of policy on the
industry and the firm with particular regard to rates and costs,
capital and labor requirements and the characteristics of the ship-
ments. -

The cost model allows us to determine long run cost, the
slope of the cost curve for economies of scale and evaluate the
production technology faced by firms. The production technology
allows us to evaluate the possibilities for instituting inputs for
one another in response to a policy change or a macroeconomic dis-
turbance-increased wages and fuel prices or reductions in indus-

trial production, for example.

The cost model treats firm output as consisting of four parts:
pickup and delivery, terminal and platform, truckload, and less-
than-truckload line haul output. This is the first study to
specify multiple outputs for the motor carrier firm, although it
has long been recognized that this would be desirable.*

I have benefited from numerous conversations with Prof. Ann F.
Friedlaender of MIT and Prof. Richard H. Spady of Swarthmore
and from suggestions made by numerous colleagues at TSC. In

particular I am grateful to Robert Thibodeau, Mark Hollyer,
Georgia Canellos and Ed Hymson.
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1. THE THEORY OF THE FIRM

INTRODUCTION

The purpose of this study is to provide the government a tool
for evaluating the effects of policy. The motor carriers industry is
the single most important mode in the transportation industry,
earning over 70 percent of the total revenues earned by all trans-
portation modes. Motor carrier services are an input in all major
industries. The prices of motor carrier services consequently
affect commodity flows between cities and regions, the income and
employment in regions, and the prices of products.

This section reviews those elements of the neoclassical theory
of the firm that underlie this study. This review differs from
most microtheory texts by placing more emphasis on the relationship
between production and cost functions because we use a cost func-
tion to make inferences about the nature of production technology.
The 1links between production and cost functions are called 'duality
theory." This section attempts to provide a non-technical guide
to the use of the empirical results, so that many underlying math-
ematical details are omitted leaving the presentation less formal

and terse than it would be if they were included.

1.1 PRODUCTION TECHNOLOGY

Neoclassical micro-theory usually introduces the theory of
the firm by defining a production function with a single homogenous

output Q, treated as an explicit* mathematical function of capital,
K, and labor, L. This explicit representation assumes that

An explicit function is one written as an equation, such as

y = f(x). An implicit function is one such as F(x,y) = 0.
Implicit functions need have no solution in terms of either
variable. Thg economic implications of solving an implicit
functlon.- quite apart from whether an equation is a solution
mathematically - depend on the assumption of separability or
homotheticity that is discussed below.



capital and labor are easily defined and measured and that output
is a single homogenous entity. There are valid reasons to
challenge these assumptions, some of which we will discuss below,
but we first review the conventional wisdom and then show how this
differs. A more standard treatment is found in Leftwich, Lancaster
or Mansfield.* We assume a knowledge of calculus through partial
differentiation, following the practice of texts such as Henderson
and Quandt, Kogiku and Nicholson.

We begin in 1.1 with a discussion of the neoclassical produc-
tion with two inputs and a single output written in explicit form.
The restrictions on the partial derivatives of this function that are
necessary to make the function '"well behaved" are set out below.
Using this function we develop the concept of an isoquant in 1.2

and derive and interpret its slope and curvature. The equilibrium
of the firm is also defined. With the addition of an isoexpendi-

ture line to the isoquant, the firms equilibrium can be shown.

We show in 1.3 that an identical firm equilibrium results regard-
less of whether a firm maximizes profit, minimizes cost or maxi-
mizes output.

By 1.4 we have introduced all of the theory necessary to
explain duality. In 1.5 we discuss how to exploit the concepts
of duality to estimate cost relationships. In 1.6 we extend the
notion of production and cost functions to multiple outputs.
Multiple output production functions are called transformation
functions or production possibilities curves, and we also discuss
multiple output firm equilibria. In 1.7 we examine the hidden
assumption in writing productions in explicit form and in 1.8
present the translog functional form, and discuss its use.

We adopt the style used in the American Economic Review for
references: Works are listed using only the name of the author
unless there are two works by the same author. If the works
are in the same year the title is followed by Jones (1972a) or
Jones (1972b); if in different years the author's name is
followed by the year of publication




Technical Relationships

A neoclassical production function may be represented math-
ematically as

Q = £(K,L). (1.1)

The production function represents only the technical nature
which underly the input-output relationships of the firm,
the output that results from a given quantity of inputs.

Marginal Products

The key technical relationships between inputs and output
are the rates of change of output with respect to a small change
in inputs. This is defined by the partial derivative of the pro-
duction function with respect to either capital or labor; these
are called the marginal products of the production function.*

3Q/3K = £, > 0 -

and (1.2)

3Q/3L L

1]
+h
v
o

For notational convenience, we represent these derivatives as fK
and fL respectively. Both derivatives are assumed to be positive;
to do otherwise would mean that an additional unit of one input
might reduce output as more and more units of that input were
added. These functions also represent the demand schedules for
the factors called derived demand functions. These derived demand

*

Partial derivatives are required in taking derivatives of func-
tions of several variables. The concept implies finding a rate
of change of one variable with respect to another while leaving
other variables in the function unchanged. In concept, a

partial derivative is not essentially different from a derivative
of a function of a single variable. It gives the rate of change
of one variable with respect to another.



functions are assumed to be negatively sloped like all demand
functions, or that the second partial derivatives are negative
B(fK)/BK.E fKK’ B(fL)/aL = fLL < 0. (1.2a)
The cross partial derivatives - the partial of the marginal product
of capital with respect to labor, or the partial of the marginal
product of labor with respect to capital, must be equal to each
other* and positive
a(fK)/BL = a(fL)/aK = fKL = fLK > 0. (1.2b)
A production function with (mathematically) continuous first and
second order partials of the proper sign is often said to be "well-
behaved." These assumptions generate some empirical restrictions

that we can use to our advantage in the estimation procedure to
test the validity of the underlying assumptions.

1.2 ECONOMIC BEHAVIOR

Isoquants

The marginal products of the production function determine
the technical rate at which factor inputs can be substituted for
each other. The ratio of marginal products, - fK/fL, is called
the marginal technical rate of substitution or just the marginal
rate of substitution. The marginal rate of substitution has an

appealing, geometric interpretation. To see it we must introduce
the concept of an isoquant: a line representing all of the com-
binations of capital and labor that may be combined to produce

Young's theorem of differential calculus requires that second
order partial derivatives be independent of the order of dif-
ferentiation; the sign is assumed to be positive meaning that

an increase in one factor input increases the marginal product
of the other.



a fixed level of output.* A set of isoquants is shown in
Figure 1.

Isoquants are smooth, negatively sloped lines in a geometric

space with labor measured on the vertical axis and capital measured

on the horizontal axis - which we will call L, K space - and they
"bow in' toward the origin (are convex to the origin).

Mathematically, an isoquant is a locus of points represented
by

Q* = £(K,L) (1.3)

where Q* is any fixed level of output.

The slope of an isoquant is the marginal rate of substitution.
This can be shown by taking the total derivative of a production
function for some constant level of output, Q*, and setting it
equal to zero

* = = -
dQ* = £,dK + £.dL = 0. (1.4)

The total derivative dQ* is equal to zero by definition since
there is no change in output along an isoquant. The slope of the
isoquant is dL/dK = - fK/fL, the marginal rate of substitution.
Figure 1 shows only three isoquants Ql’ Q2 and QS' Note that:

1) Isoquants further from the origin denote higher levels of
output; 2) Isoquants exist for any conceivable level of output,
not just Ql’ Q2 and Q3 but for all levels; lesser, between, and
greater than. This property is referred to as that of being
everywhere dense. 3) Isoquants may not intersect.

The curvature of an isoquant represents the degree to which
inputs may be substituted for each other; input substitutability
increases as the isoquant approaches a straight line and decreases

*
The prefix ''ISO" means constant and '"quant" refers to the quantity

of output. Isoquants are assumed to be smooth, although in
practice they may have corners representing the fact that input
choices may be discrete; for example, machines may come only in
given capacities.



as it approaches a right angle bend. This concept is called the
elasticity of substitution.

: Q3>Q,>Q
Slope = - fk/fL
Q3
Q,
Qy
0 X

FIGURE 1. ISOQUANT MAP

Isoquants describe only the technical relationships that
govern firm behavior; the economic elements of the problem are the
market-determined prices of the factor inputs and the total outlay
the firm allocates to production. Together, these elements deter-
mine the optimal economic behavior for the firm; the marginal rate
of substitution determines the technical rate at which inputs can

be substituted and the factor prices determine the allowable market
rate of substitution between inputs.

Isoexpenditure Line

The 1ink between the market and technical rates of factor
substitution that determine the firm's optimal behavior is the
behavioral objective of the firm. If the firm wishes to maximize
the output that can be produced for a given expenditure on
inputs - a fixed outlay, we can visualize the optimal firm behavior
through the concept of an isocexpenditure line.* This line can be
represented on the same graph as the isoquant. The isoexpenditure
line is a straight, negatively sloped line in L,K space and repre-
sents all of the-combinations of factor inputs that cost the same

*
Most texts refer to the isoexpenditure line as the "isocost" line;
since we use isocost to denote a locus of constant cost as inputs
vary in factor price space (see Section 1.4 on Duality) we use
isoexpenditure line to avoid any confusion that might result from
using the term in two senses. See Varian's notes for more detail.
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dollar amount. The slope of this line is the negative of the
factor price ratio -rc/w where r is the price of capital services
per unit time, c the acquisition cost of capital* and w the wage
rate, as shown in Figure 2.

FIGURE 2. ISOEXPENDITURE LINE

Firm Equilibrium

Optimal economic behavior requires the firm to produce the
maximum output possible with the inputs that the firm can afford.
Geometrically, this means that the firm must equate the slope of
an isocost line to the slope of the isoquant or

-rc/w = fK/fL . (1.5)

—
This formulation of capital cost takes into account the fact that
both acquisition costs - the price of the physical capital such
as a machine - and the cost of financial capital r determine the
user cost of capital or the 'price of capital services." The K
in this specification represents units of physical capital- such
as machines. 1t follows that cK is the dollar value of the
capital stock, and r is an interest rate that must be greater
than zero and less than 50 percent (probably). We assume that
capital is utilized to capacity or that no additional "work"
can be gotten out of the capital stock and, that there is no
depreciation. Of course, there is depreciation in reality, but
including it in this discussion does not add anything important
and makes the notation more complex,



This condition alone does not imply the level of output that will
be produced by the firm. That is determined by the firm's total
fixed outlay or expenditure. The ratio of marginal products shows
the rate that inputs can be substituted for each other based on
purely technical grounds. The ratio of factor prices shows the
rate that the factor market allows inputs to be substituted.
Together, these ratios imply the optimal input levels, K* and L*
shown in Figure 3. The ratio -rc/w = -fK/fL is called the
resource allocation ratio

expansion path
*
L2 I
E3 ] Q3
Ly - C3 .
| o 2
'
N \\\
% % K
0 K% K2

FIGURE 3. FIRM EQUILIBRIUM

A locus of points that satisfy the optimality or ""necessary"
conditions is called the expansion path. This locus occurs as the

firm expands output by increasing its expenditures and moving to an
isoexpenditure line further from the origin. If neither technology
(the isoquant slope) nor factor prices (the isoexpenditure slope)
change over time, the expansion path will be a straight line
emanating from the origin such as the one shown in Figure 3. This
defines the long run equilibrium of the firm because both inputs
are freely variable.

The Firm's Planning Horizon

A key assumption here is that the firm is free to vary all of
its inputs. Free variability of all inputs defines the economic
long run. In the short run one factor is fixed.



1.3 OPTIMAL ECONOMIC BEHAVIOR

Optimal economic behavior was previously shown to mean pro-
ducing the maximum output for a given expenditure. The same axiom,
(that the firm will use factor inputs in quantities defined by the
point at which the ratio of factor prices is equal to the ratio of
marginal products, or equates the slope of the isoquant and iso-
expenditure line), also applies to firms that:

1. Maximize profit;
2. Minimize the cost of producing a given output;
3. Maximize the output that can be produced for a given cost.

That is, the resource allocation ratio and expansion path for
each different firm objective listed above is identical.

A demonstration that equivalent resource allocation ratios
result from these seemingly-different firm objectives begins below.

1.3.1 Profit Maximization

Maximize M(K,L) = PQ-wL-rcK (1.6)
where 1T = profit
0 Necessary Conditions:

9M/3K = Pf, - rc = 0
(1.7)

31l/9L PfL -w=20

0 Resource Allocation Ratio:

-rc/w = -fK/fL

Equations 1.7 show that a competitive firm will equate

the marginal revenue product, Pfi i = K,L, of each factor to its
price. Since price will equal marginal revenue (as it must under
the assumption of perfect competition), this condition means that
marginal revenue must equal marginal cost; P = fK/rc and

P = fL/w.



1.3.2 Production Cost Minimization

In this case the firm wishes to minimize the cost of producing

Minimize C(X,L) = wL + rcK

(1.8)
Subject to Q* = f(K,L)
Form of Lagrange Expression:¥
Z(K,L) = wL + rcK + A Q*-£(K,L))
o Necessary Conditions:
92/3K = rc - AfK =0
(1.9)
3Z/3L = w - AfL = 0
o Resource Allocation Ratio:
-rc/w = -fK/fL
1.3.3 Output Maximization
Maximize Q* = £(K,L) (1.10)

Subject to C = wL - rcK

When an expression is maximized or minimized subject to a side
relation or constraint, as in the case of production cost
minimization and output maximization, one way of solving the
problem is to combine the objective function to be maximized or
minimized into a single expression called a lagrange expression
using a new term called an unidentified Lagrange multiplier. The
Lagrange expression may then be treated as the objective function
and necessary conditions may be derived by taking derivatives of
that expression. The undefined Lagrange multiplier (A in 1.3.2,
u in 1.3.3) has the interpretation that it represents the change
in the objective function due to a relaxation of the constraint.
The maximization problem 1.3.3 is the primal to the dual of
minimizing cost subject to an output constraint and it may be
shown that the Lagrange multiplier for the primal is equal to

the inverse of the dual Lagrange multiplier. See Henderson and
Quandt or Kogiku for further discussion.

10



Form a Lagrange Expression

Z(K,L) = Q* - f£(K,L) + u(wL + rck)

9Z/3K = -fK + urc = 0 (1.11)
9Z/3K = -fL + uw = 0
Resource Allocation Ratio
-rc/w = -fK/fL

1.4 DUALITY

Note these three different firm objectives result in identical
resource allocation ratios. What significance does this have? It
means the maximizing either profit or output for a given expenditure
level produces the same factor input ratios as minimizing the cost
of producing a given level of output so that the second objective
is a dual operation to the primal one of profit maximization. See

Diewert (1972) for a more advanced discussion of duality.

Duality also means that due to a unique set of correspondences
between cost and production relations we can derive technical
(production) relationships from the economic relationships found
in the cost function. That is, the cost function allows us to
infer values for the optimal input ratios, the marginal rate of
substitution between inputs and the elasticity of substitution.
This duality relationship was first proved by Shephard, (1953), and
is called Shephard's Lemma; the key assumption underlying this

correspondence is cost minimization.

The Geometry of Duality

The geometry of the dual cost relation is exactly analogous
to the isoquant-isoexpenditure relationship we discussed above,
but instead of analyzing the firm equilibrium in factor input

space, we now analyze it in factor price space (w, rc space).

1.1



Isocost Curve

An isocost curve represents all possible combinations of the
factor input capital and labor which cost exactly the same amount.¥

This curve is shown in Figure 4.

C5>Cy>Cy

W Slope = Grc/Gw

TC
FIGURE 4. ISOCOST CURVE

Like isoquants, the isocost curves represent higher levels of
expenditure (and hence output) as we move away from the origin.
The regularity conditions imposed on the isoquants are analogous
here. Let the cost function be

C = G(rc,w) . (L.12)

The slope of the isocost curves is the ratio of derivatives of the
cost function with respect to factor prices. If 3C/3rc - Grc and
aC/dw = Gw, both will be positive.

Transforming the isoexpenditure function into factor price
space we note that the function has a slope of -rc/w = -K*¥/L*%,
where stars denote optimal levels of the inputs; this is shown
in Figure 5. Optimal firm behavior viewed from the cost function
approach, says that the firm must operate at the point where the
isoexpenditure line is just tangent to the isocost curve asso-
ciated with Q*, that is -K/L = —GrC/Gw. This also defines the
firm's expansion path, but in factor price space.

*
This section follows Varian's Lecture Notes.
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output for a given level of inputs with reasonable accuracy. It
would not provide satisfactory estimates of the marginal products
of either capital or labor because of the simultaneous determina-
tion of K and L, and the high correlation between K and L or
"collinearity'" as econometricians call it. These two are highly
correlated because they are 'complements' - increases in one lead
to increases in the other - and because they are determined simul-
taneously with the level of output.

Assume that the production function to be estimated in
Q = £f(X,L) + e (1.13)

Q is the output of individual firms, K and L the levels of the
factors employed, and e is an error term with mean zero and a
variance that is constant across firms (homoscedastic).

This specification produces good estimates of the unknown
parameters of the production function only if the independent
variables (capital and labor) are not correlated with the error
term. If any of the independent variables are correlated with the
error term, the coefficient estimates will be ''biased'", in that
their average value from repeated samples (expectation) will not
equal the true parameters being estimated.

The error term embodies all of the effects of omitted vari-
ables (and our ignorance). In this case the variables that were
left out are the price of output, the factor prices and inter-
firm differences in marginal efficiency. Going back to the
necessary conditions for a profit maximizing firm,

Pf, - rc

9N/3K K

(1.14)
9/ 3L

PfL - W,

By inspection of the necessary conditions it is clear that the
omitted variables are P, rc and w. These omitted variables deter-
mine the size of output for P and the size of X and L for rc and
w; clearly the independent variables will be correlated with the
error term and so the estimates of production technology are

13



Slope = - K/L

rc

FIGURE 5. ISOEXPENDITURE LINES IN FACTOR PRICE SPACE

Expansion Path
- K/L = - Grc/Gw
w
C,(Q,)
c;(Q))
TrC

FIGURE 6. FIRM EQUILIBRIUM IN FACTOR PRICE SPACE

1.5 ESTIMATION AND DUALITY

If cost and production relations are equivalent, why bother
with with cost functions? Because direct estimation of the produc-
tion function often leads to estimates which are very poor econo-
metrically. In particular, the assumption that factor inputs are
homogenous and easily measured is usually false, In fact, the
inputs are often subject to errors of measurement. Capital is
particularly troublesome because it is often of different ages and
efficiencies associated with intensities of use that further compli-
cate accurate measurements. Furthermore, the book or accounting
value of capital seldom accurately represents its market value.

If inputs could be measured in some satisfactory manner, how
would the production relationships be estimated? If the production

function were estimated directly, we could predict the level of
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output for a given level of inputs with reasonable accuracy. It
would not provide satisfactory estimates of the marginal products
of either capital or labor because of the simultaneous determina-
tion of K and L, and the high correlation between K and L or
"collinearity'" as econometricians call it. These two are highly
correlated because they are "complements'" - increases in one lead
to increases in the other - and because they are determined simul-
taneously with the level of output.

Assume that the production function to be estimated is
Q = £(K,L) + e (1.13)

Q is the output of individual firms, K and L the levels of the
factors employed, and e is an error term with mean zero and a
variance that is constant across firms (homoscedastic).

This specification produces good estimates of the unknown
parameters of the production function only if the independent
variables (capital and labor) are not correlated with the error
term. If any of the independent variables are correlatéd with
the error term, the coefficient estimates will be 'biased", in
that their average value from repeated samples (expectation)
will not equal the true parameters being estimated.

The error term embodies all of the effects of omitted vari-
ables (and our ignorance). In this case the variables that were
left out are the price of output, the factor prices and inter-firm
differences in marginal efficiency. Going back to the necessary
conditions for a profit maximizing firm,

[}

PfK - TC

PEL - W, (1.14)

oM/ 3k

3M/ 3L

0

By inspection of the necessary conditions it is clear that the
omitted variables are P, rc and w. These omitted variables deter-
mine the size of output for P and the size of K and L for rc and
w; clearly the independent variables will be correlated with the

error term and so the estimates of production technology are

1.5



biased. On the other hand, a properly specified cost function
(without any known omitted variables) contains all of the requisite
variables to insure that estimates of that relationship will be
unbiased. Cost function estimates have better statistical proper-
ties than production function estimates but we are only required

to measure their factor prices. This poses fewer problems than
measuring the inputs themselves.

1.6 TRANSFORMATION FUNCTIONS

The conventional theory of the firm outlined above requires
some extensions before we arrive at the functions that we

actually estimated.

The first extension is to multiple outputs. A production
possibilities or transformation curve represents all possible

combinations of two goods that can be produced with fixed quan-
tities of inputs. One such curve is shown in Figure 7. The
transformation curve says that we cannot have more of both goods
so long as the quantity of inputs or resources remain fixed. The
concept displays the tradeoffs between production of two goods.
The graph of the function in "output'" space is concave or bows
away from the origin.

Q
’ Slope = - £,/£, = - 2%/
BQl;BX
QG

FIGURE 7. TWO OUTPUT TRANSFORMATION FUNCTIONS
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The transformation function is

- £(Q,Q,) * g(X) = 0 (1.15)

where X is a single, composite input. (If we assume two factor
inputs, the analysis becomes much more complex).

Assume that the transformation function can be solved explic-
itly for X; the function gives the cost of producing all possible
combinations of Q1 and Q2 with fixed input levels.

The slope of the transformation function is called the marginal
rate of transformation between outputs, and is found by taking a

total differential of the transformation function

- d,dQ, - £.dQ, + g dX = 0
1991 7 E29Rp 7 &y (1.16)

where fi = a/aQi i=1,2.

Assuming that dX = 0 meaning no change in inputs along the trans-
formation curve, the slope of the curve is 2

dQ,/4Q, = - £,/£, . (1.17)

The partial derivatives of the transformation function with
respect to outputs are the marginal costs of each output. There

is an inverse relationship between marginal cost and marginal
product; if additional units of one factor add more to output than
another, the marginal cost of the first is smaller than the
second. The slope of the transformation function is

dQ,  3Q,/3X
aq, ~ Q75X (1.18)

{(where aQi/BX i = 1,2 is marginal product of outputs 1 and 2
respectively). The inverse relationship between marginal product
and marginal cost should now be clear; that is an/BX = 1/f1 and
BQZ/BX = 1/f2, or marginal costs are equal to the inverse of
marginal products.
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The optimal output levels (for a profit maximizing firm)
occur when the ratio of the marginal rates of transformation is

equal to the ratio of product prices

. (1.19)

Graphically, a multiproduct equilibrium occurs at the tangency
between the transformation function and a line representing all
possible combinations of goods that produce a constant revenue -
an isorevenue line. The equilibrium of a multiproduct firm is

shown in Figure 8.

Isorevenue Line

.

£,/£) = Py/P,

Transformation Curve

Q

FIGURE 8. MULTIPLE OUTPUT EQUILIBRIUM FOR A
PROFIT MAXIMIZING FIRM

1.7 SEPARABILITY AND JOINTNESS: A HIDDEN ASSUMPTION

Transformation functions are just multiple output production
functions except that transformation functions do not assume that
output can be written as an explicit function of inputs. There is

no assumption that the function
- £(Q,Q)) + g(X) =0 (1.20)
can be written in explicit form as

£(Qy,Q,) = g(X) . (1.20a)
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This seemingly-innocuous assumptions is made when ever production
(or transformation) functions are written in explicit form. If
the function can be written in explicit form it is called
separable. See Friedlaender et al (1977) for more detail.

Separability means that if there are several distinct outputs
they are all jointly produced and individual production functions,

do not exist. We may not write

Q, = £(K,L) (1.21)

and

"

Q, = £(K,L)

Furthermore, under this circumstance, the specification of a func-
tion with multiple outputs is no more general than one with a
single output. That is, we may just as well treat outputs Q1 and
Q2 as being the same (aggregate across outputs) without losing

any information about the underlying technology.

The neoclassical production function presented in 1.1 made
the a priori assumption of separability, as do most commonly
used empirical production functions such as the Cobb-Douglas or
the more general constant elasticity of substitution (CES).

Table 1 offers several examples of products produced jointly
from an intermediate product. Separabhility implies that none of
the joint products have separate production functions even though
we can write one for the intermediate products.

TABLE 1. EXAMPLES OF JOINT PRODUCTS

INTERMEDIATE PRODUCT JOINT PRODUCTS
o Apple juice o Cider, Applejack, Vinegar
o Grape juice o Wine, Brandy, Sherry
o Sugar cane 0 Molasses, Sugar, Rum,
0 Milk o Ice cream, Butter,
Cheese
o Timber o Paper, Lumber, Plywood
o Crude o0il o Fuel o0il, Kerosene,

Gasoline
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If production is non-joint, each individual product does have an
individual production function. There are no economies or dis-
economies of jointness, that is, no advantages or disadvantages to
the separate production of the products in a non-joint technology

accrue.

The transformation function does not lend itself well to
direct estimation because of the implicit assumption of separabil-
ity embodied in writing it in explicit form. That is, in writing
the function as

Q = £(X,1L) , (1.22)

we prejudge input-output separability, rather than treat it as a
testable hypothesis. The problem is, if we are to estimate the
functions at all, there must be a dependent variable. Therefore,
the usual functional forms assume separability and impose this
assumption on the data. Furthermore, direct estimation of the
transformation function has all of the problems associated with
the direct estimation of any production process that we have pre-
viously discussed.

Just as before, the solution is to estimate the cost function
and get back to the production technology by invoking Shephard's
lemma. The function specified with multiple outputs is called a
joint cost function, and examples are provided below.

1.8 THE TRANSLOG PRODUCTION FUNCTION

The most widely-used functional form to arise in the theo-
retical and empirical work on duality theory is the transcen-
dental* logarithmic, or '"translog" form which may be used to

A transcendental function is one that cannot be expressed as the
root of an algebraic function with rational coefficients or one
representing a trigonometric, exponential or logarithmic function
not defined by the elementary operations of mathematics. It
seems clear that the name was chosen because it has a nice ring
as much as it clearly describes the functions. A logarithmic
function is just one of the class of transcendental function.
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specify either production or cost functions. The name translog

may be a misnomer, because although the function is transcendental,
it is also linear-quadratic in the logs of variables and could also
have been accurately called the '"quad log' function. It is a
"flexible" functional form because it does not impose strong a
priori assumptions about the technology on the data, but allows
tests of these assumptions.

A translog function may be interpreted as a second-order
Taylor's Series expansion in the variables around some arbitrary

point of approximation. The seminal idea for the translog seems
to have come from the use of various second order approximations
to the CES production function (such as Kmenta's approximation*),
or other linear-in-the-parameters numerical approximations made
for the purpose of estimating production functions by Newton's
and other similar methods. These approximations are second order
Taylor's Series linearizations in the parameters, rather than the

variables. From there it is a logical step - at least in
retrospect - to the translog function. The logic of this pro-
gression does not diminish the credit due Christensen, Jorgensen

*Kmenta's CES Approximation - One logical step in the progression
from more restructive functional forms was Kmenta's approximation
to the CES production function.
The CES function with a multiplicative error term is
Q = A[SK™P + (1-8)L7P1 W/Peu,
Taking logs gives

In Q = InA-u/pln[6K P + (1-8)L7P] + u.

The term in brackets cannot further be simplified using logs;
Kmenta's solution is to take a Taylor's series expansion, in the
parameters around the point, p=0;

InQ = 1nA + ud1nK + p(1l-8)1InL - 1/2pud(1-8)(InkK - 1nL)2 + u
= g, * 8, InK + 8, InL - 1/2 g, (InK - 1nL)? + u.

The first three terms of this function are identical to the Cobb
Douglas function for which p=0; the remaining terms pertain to
departures of p from zero. The parameters of the CES function
are: A = exp B1; § = By + B3); & = By * B3; p = -2B4(By + B3)/
BpBz. If B4 cannot be distinguished from zero the Cobb-Douglas
function is appropriate.

The similarity of this approximation to the translog is even more
clear when the_penultimate term is expanded: 1/2(B4an2 - 284
InKlnL + 8,1nL2).
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and Lau for deriving the function and proving its relationship to
the underlying duality theorems which relate it to production
theory. Other functions have arisen from the recent interest in
duality; production and cost functions developed by Diewert, Hall
and others share the desirable theoretical properties of the
translog function. These other functions, however, lack the
analytical tractability, ease of estimation and interpretation of
the translog and have not found such widespread acceptance.

Translog functions may be lengthy when they are specified with
multiple inputs and outputs, so a translog cost and production
function with fewer inputs and outputs than those actually esti-
mated are shown below.

The Translog Production Function

Assume a single output Q, and two inputs K and L,

g(Q) - £(X,L) =0 (1.23)

capital K, labor L. The translog representation of this function
(assuming separability) is

2
1nQ = o + oIn(K-K') + a,In(L-L') + 1/281(1n(K—K') )
+ 1/282(}H(L'L')2) + Ylln(K—K')ln(L—L') (1.24)
where K' and L' represent the points of approximation, usually the

variable means.

If the B and y coefficients cannot be reliably distinguished
from zero, the translog form collapses to the Cobb-Douglas;
furthermore, if a; * o, = 1, it is Cobb-Douglas with constant
returns to scale. If the B and/or y terms are reliably distin-
guishable from zero the functional form is not Cobb-Douglas.

Relationship to Taylor's Series Expansion

The Taylor's Series expansion for functions of several
variables is
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2

. 2 TLy,
£(X,L) = £(K',L") + 3f(§,L) (K-K') , 3%F(K,L) (K-K')

K 1! 3K 2 21
(1.25)
2

+ 9f(K,L) (L-L') , 3f(K,L) (L-L)" _ ... .,

oL IT 1.2 2!

2

9 f(X K-K') (L-L' .

see + ang’L) ( %g ) Higher Order Terms.

The relationship between the Taylor's Series expansion and the
translog functions should now be clear; the translog production
function may be interpreted as a Taylor's Series expansion around
InQ = 0, where in K' = 0 and 1n L' = 0, approximating any produc-

tion function.*

The derivatives of the underlying function are equal to the
coefficients of the translog function; that is, the parameters of
the translog function are the partial derivatives of some arbi-
trary underlying function whose numerical value depends on the
points of approximation. The parameters of the function may be

interpreted as follows:

o = %%%% = elasticity of output with respect to capital;
a, = glgL = elasticity of output with respect to labor;
azln
B, = = slope of demand for capital function;
1 ) 2
1nK
2 (1.26)
BZ =9 1n = slope of demand for labor function;
31nL
- leng - tells whether capital and labor are com-
Y1 9InKalnL plements of substitutes according as it

is positive or negative.

The translog function actually has two possible interpretations;
either differential approximation or a numerical approximation.
A function that is a Taylor's Series expansion around some arbi-
trary point may be considered both a numerical approximation and
a differential approximation. In our discussions we have treated
the translog as a differential approximation, and that imposes

no special problems on its interpretation.
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1.8.1 The Translog Factor Share Equations

The translog function may be also used to derive and estimate
either factor demand functions or factor share equations. Factor
demand functions are the demand schedules for the factor inputs
derived from the necessary conditions for profit maximization.
Factor share equations are just algebraic rearrangements of the
factor demand equations. For example, profit is defined as:

=P -2C (1.27)
where
Q = £(X,L) Production Technology
C = wL + rcK Total Cost
P = output price (constant to the firm).

The first order conditions are:*®

*

The assumption of perfect competition is embodied in this equa-
tion because price is treated as a constant to the firm. In the
more general specification price varies at the firm level, and
the derivatives of the profit function are

an=< dP\ . _ _
3% P + QH@ tK rc 0
oll

3T (P + Q%%)'EL -w=20.

The term (P + Q%B) is marginal revenue and can be written

P(1 + 1/e)fg where e is the price elasticity of demand. This
reduces to the competitive case when price elasticity is infinite
(prefectly elastic to the firm) since

P(1 + 1/¢€) fK - rCc = PfK - rc 1iff e = o,
The aggregate factor distribution relationships which result from
the assumption of perfect competition are

= IC .4 =¥
fK P and fL P

where P is the price of output to the firm, or the price level
for an economy.
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PfK = rc and PfL = W, (1.28)

Since the translog function is a logarithmic function, the rela-
tionship between the ordinary (non-logarithmic) derivatives of

the production function, fK and fL and the logarithmic derivatives
of a translog function produce the share equations:

31nf(K,L) Q _
STE2 F ¢ £ - (1.29)

This fundamental identity allows us to derive the factor share
equations. Profit maximization requires that the marginal revenue
products must equal factor prices:

PfK = rc

Substituting from the identity between log and ordinary deriva-
tives gives

31nf (K,L) PQ _

IEN X TC (1.30)

because the logarithmic derivative of a function is its elasticity.
To obtain the ordinary derivative from the log derivative requires

"reversing'" the elasticity relationship.

Since Pf(K,L) is total revenue, the factor share of total
Trevenue can be found if we rearrange the preceding equation
9lnf (K,L) rcK

3InK ~ PQ (1.30a)

Let the share of factor payments of total revenue be Mi i = K,L;
substituting the log derivative of the translog function into
(1.30a) gives

M, = o

K- % * Bylnk -+ L InL
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1.8.2 Efficient Estimation Procedures

The most widely used estimation procedure for the translog
function is to estimate the production function and one less than
the total number of factor share equations* simultaneously. In

this case we would estimate

- 1 2 1 2
InQ = a  * alan + azlnL * 3 81(1nK) 7 83(1nL)

+ y,1nKinL + e; (1.31)

M, = o, + Blan + yllnL + e,

1

To simplify notation, assume all variables use their own means as
the points of approximation.

These two equations can conveniently be rewritten in matrix

form as:
Y = XB + e (1.32)
where
1nQ
Y =
My

[1 1nk 1nL 1/2(1n1<)2 1/2(1nL)2 1nK1nL]
X_

0 1 0 1nK 0 1nL
°1
' = =
B' = [agoq0,ByB8,Y,] e =l
€2

Displaying the equations as a linear system, the interdependence

between the parameters of the two equations is emphasized: ay

We cannot estimate the production function and all of the factor
share equations simultaneously because this would lead to a sing-
ular error matrix and parameter estimates could not be obtained;
we must delete one factor share equation (labor in the example)
and estimate one share equation plus the production function.
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appears in both equations as does Bl and Yy (the elements of g dis-
tribute across X column wise). This across-equation interdependence
of coefficients allows us to use more information to estimate the
parameters than if we estimated each equation separately. Simul-
taneous estimations lead to more efficient (smaller variance)
estimates.

Some simultaneous estimation methods are sensitive (and give
different parameter estimates) on which factor share equation is
deleted. All least squares estimation methods are sensitive to the
equation deleted unless they are run iteratively while maximum
likelihood techniques are not; we use the full-information maximum
likelihood (FIML) algorithm. See Barten for a discussion of this

invariance property of maximum likelihood estimators.

The Translog Joint Cost Function

InC = a * alanl + azanz + Bllnw1 + lenw2 (1.33)
+1/26,,1nQ,1nQ, + 1/26,,1nQ;1nQ, '+ 1/26,,1nQ,1nQ,

+ 1/2y,;1nw. Inw, + 1/2y. 1nw,lnw, + 1/2v..1lnw.lnw
11 1 1 12 1 2 22 2 2

pllanllnw1 + plzanllnw2 + p211nQ21nw1
+ pzzanzlnwz.
The presence of the product factor price interaction terms Py

indicates that separability (homotheticity) is not assumed, but
that it can be tested using the likelihood ratio test.

The cost function may be written more compactly as

m n m
InC = o + o,1nQ., + dInw. + 1/2 §..1nQ.1lnw.
o igl 1 Ql ng BJ ] / ng 1) Ql ]
n n m n
+ Y Y5 1nw lnw + 2 1nQ lnw,
i=1 j=1 i=1 331 1
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Using an identity relationship similar to the one used to derive
the revenue factor shares equations, factor cost share equations
may be derived. Since optimal factor employment equals the
derivative of the cost function with respect to the price of that
factor

Xg = BC/BWi . (1.34)

The identity between logarithmic and non-logarithmic cost deriva-
tives leads to the following factor cost share equations

91nC 5C “i
C

51nw,  ow. (1.34a)
i i
X* 931nC C
= — (1.34b)
i Blnwi Wi
w.X.
where Mi = —%Ti represents the factor cost shares.

Combining the logarithmic derivative of the cost function with the
factor share definition the following factor share equation is
given:

Mi = Bi + Ylllnwi + lelnwj + pllan1 + plzan2 . (1.35)

The derivation of the factor cost share equations is competely
analogous to the production factor share equations in the produc-
tion function case, except that it uses shares of total cost
rather than total revenue. In macroeconomic work, the cost and
revenue shares are identical (under an assumption of perfect

competition). The dependent variables in the equations are
interchangeable.
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2. THE DEFINITION AND MEASUREMENT OF THE JOINT COST FUNCTION

2.1 COST MEASUREMENT

Cost functions in economics are based on the concept of
opportunity and social cost. Opportunity cost means that deci-
sions to produce one good involve foregoing some of another good
because the total resources available to produce all goods are
limited. The value of the product foregone to produce that pro-
duct is the opportunity cost. It is the value the resources would
have had if used in the next best alternative.

Opportunity cost identifies the economic cost to a firm by
using a factor input in its production process. There is not an
invariant congruence between opportunity and social cost.
Society's interests and firm interests may not be coincident with
society's if there are imperfections in the economic system (such
as monopoly power) but, we can reconcile the two by defining
economic cost as the payment necessary to maintain a resource in
its current use.

There are several important measures of cost and one major
dichotomy depends on whether we wish to deal with the long run or
the short run. In the long run all factor inputs are variable and
none are fixed; the long run is defined as that length of time
necessary to vary all inputs in the production process. The short
run is that period of time in which one or more inputs cannot be
varied. These definitions do not depend on real or calendar time.

The firm's cost varies with the price of the factor inputs
its uses in the production processes, the production technology -
how inputs can be combined physically - and with the level of
output the firm selects.

There are seven key measures of cost: 1) Total Cost;
2) Average Total Cost; 3) Marginal Cost; 4) Fixed Cost; 5) Average
Fixed Cost; 6) Variable Cost; and 7) Average Variable Cost. There
are two additional types of cost that are important in this study:
joint cost and common cost.
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Total Cost is the total cost of production, including any
costs that are implicit, such as return to the owner for capital
invested in an enterprise. By definition this must equal the sum
of the expenditures on all of the inputs used in the production

process.

Average Cost is total cost divided by the level of output

associated with that cost.

Marginal Cost is the cost of producing an additional unit of

output, or the rate of change of cost with respect to output.
Incremental cost is a term often used by business men in industry,
and it represents an approximation to marginal cost. It is the
change in cost for a given change in output. As the change in
output becomes smaller, the two become identical. The only reason
that there is any difference between them is because incremental
cost is discrete while marginal cost is not. There may be opera-
tional (numerical) differences but not conceptual differences

between the two.

The cost Concepts may be defined in either the short run or’
the long run, but the ones heretofore defined are not essentially
different in the long run or the short run. Those remaining
measures of cost are exclusively short run concepts.

Variable Cost is the proportion of cost that changes as output

changes. In the long run all costs change with output, therefore,

variable cost is a short run concept.

Average Variable Cost is just variable cost divided by output.

In the short run the difference between variable cost and
total cost is fixed cost, that is, cost that does not vary with

output.

Average Fixed Cost 1is fixed cost divided by output.

The Measures of Cost

The cost function in generalized form is

C = G(Q,w,t) (2.1)
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where C is cost, Q is a vector of output, w a vector of factor
price and t is time. This function represents long-run total cost
by definition since it includes no fixed costs.

A short run cost function could be distinguished from a long
run function because the short run function would include fixed
cost - for example

¢S = GQ,w,t) + D (2.2)
where CS denotes the short run cost function and D represents
fixed cost.

The long run total cost function is also the sum of the input
prices times the optimal or profit maximizing factor input quanti-
ties for various levels of output

n
C=0G(Qw,t) = ¥ wX; . (2.3)
i1

The short run function is the same save for the inclusion of
fixed cost

h-k
G(Q,w,t) +D ¥ wX. +D (2.4)
i=1 °1*

C

where there are k fixed factor inputs.

Given short run and long run total cost we can define average
total cost, average variable cost, average fixed cost and marginal

EOSt.

Average total cost is total cost divided by the level of out-
put.

C=0C/Q = G(Q,w,t)/Q . (2.5)

This is long run average total cost.

In the short run we have average cost as

s = t8/q = [6eQ.w,t) + D)/a. (2.6)
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Average fixed cost is

D = D/Q , (2.7)

and marginal cost 1is
8C/3Q = 3G(Q,w,t)/ Q . (2.8)

The marginal cost of the ith output for multiple product
firms is

3C/3Q; = 3G(Q,w,t) Q; - (2.9)

2.2 JOINT AND COMMON COSTS

Joint costs are the subject of considerable confusion in
transportation economics. Joint costs are associated with the
production of two or more products from a single production pro-
cess. The confusion arises in part because this concept has been
linked to the classification of the production process as separable.
If the production process is separable, then all products are joint,
and no individual production functions exist. If the production
process is separable there exist true joint costs because
only then will there exist joint products.*

Common cost is often used in a way that suggests that it is
synonymous with joint cost.** Common costs should actually represent

The concept of jointness is further complicated in the applica-
tion of the translog cost function because it is usually re-
ferred to as the joint cost function. This is not a prejudgment
of the question of jointness in the production process, but a
reference to the fact that the cost function and the associated

factor share equations are estimated - e.g., simultaneously.
&

For example Schuster says, "There is a fine distinction between
joint and common costs. Joint costs arise when two or more
products are always produced in fixed proportions by the same
production process while common costs arise when two or more
products may be produced by the same production process in vary-
ing proportions. See Pegrum, op. cit., pp. 155-157, and Miller,
op. cit., pp. 161-163."
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the costs of two or more outputs that, because of accounting
practice, are not kept distinct. Common costs may exist regardless
of whether there exist joint products and separable production
functions. Common costs may be associated with joint products but
this remains an accounting problem, not a question about the pro-

duction technology.

Transportation test often use the term joint cost to mean
costs associated with producing joint products produced only in
fixed proportion. It is common to reference Alfred Marshall,
considered by many to be the founder of modern microeconomics.
Most of Marshall's examples of joint products were of products
that could at least in the short run, be produced only in fixed

proportions. For example,

'"§4. We may now pass to consider the case of joint
products: i.e. of things which cannot easily be
produced separately; but are joined in a common origin,
and may therefore be said to have a joint supply,.such
as beef and hides, or wheat and straw. This case
corresponds to that of things which have a joint demand,
and it may be discussed almost in the same words; by
merely substituting '"demand" for supply and vice versa.
As there is joint supply of things which have a common
origin. The single supply of the common origin is split
up into so many derived supplies of the things that
proceed from it.

The examples of joint products was so heavily weighted toward
those that could be produced only in fixed proportions, that an
association of joint cost and fixed proportions was firmly rooted

in the literature and minds of many. Garver and Hansen, authors
of Principles of Economics (1928), said

"JOINT SUPPLY AND JOINT COST. When two goods are the
inseparable results of one productive provess, it is
impossible to ascertain the cost of either as far as
that process is concerned. Thus cotton fiber and cotton
seed, which are the joint products of the cultivation of
the cotton plant, have no separable cost of growing.
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Marshall notes in Ch. VII § I that

Marshall continues to discuss joint products using ocean freight

It often happens that a thing made in one branch of
business is used as a raw material in another, and then
the question of the relative profitableness of the two
branches can be accurately ascertained only by an
elaborate system of book-keeping by double entry; though
in practice it is more common to rely on rough estimates
made by an almost instinctive guess.

as an example

In

proportions-joint products.
compatible except that our definition attaches a more technical

meaning to jointness.

Another difficult case is that of the shipowner who has
to apportion the expenses of his ship between heavy
goods and goods that are bulky but not heavy....

..... in many ways the general principle can be applied
that the relative proportions of the joint products of
a business should be so modified that the marginal
expenses of production of either pr?duct should be
equal to its marginal demand price.

footnote, Marshall notes that

Of course this does not apply to railway rates. For

a railway company having little elasticity as to its
methods of working, and often not much competition from
outside, has no inducement to endeavor to adjust the
charges which it makes for different kinds of traffic
to their cost to itself. In fact though it may ascer-
tain the prime cost in each case easily enough, it
cannot determine accurately what are the relative costs
of fast and slow traffic, of short and long distance
traffic, of light and heavy traffic; nor again or

extra traffic when its lines and its trains are crowded
and when they are nearly empty.

The example of ocean freight is clearly one of variable

different sense than we do; he says costs are not separable or

allocable to each product.
allocation or cost to each product (by taking the derivative of
the fitted cost function).

tages of the translog methodology.
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Although Marshall frequently used examples of fixed propor-
tions joint products, it is clear from a careful reading (also see
Mathematical Appendix Notes XVII, XVIII, XIX, XX and XXI of the
8th (variorum) Edition) that he understood that fixed-proportions
joint products are special cases of the variable proportions joint
products. For example see footnote 3 p. 388; '"We must illustrate
by a simple example in which it assumed that the relative amounts
of the two joint products are unalterable,'" (emphasis supplied)
and in Mathematical Appendix Note XIV;

Let factors of production of a commodity by aq, aj,

etc. and let their supply equations be y=¢1(X}, Y=o (X),
etc. Let the number of units of them required for

the production of x units of A by mjx, myx...respectively;

where my, my,... are generally not constants but func-
tions of x. [emphasis supplied]

and again in § b. p. 390 Marshall continues;

There are very few cases of joint products that cost of
production of both of which together is exactly the
same as that of one of them along.... It is only when
one of two things produced by the same process is value-
less, unsaleable, and yet does not involve any expense
for its removal, that there is no inducement to attempt
to alter its amount;... For when it is possible to
modify the proportions of these products, we can ascer-
tain what part the whole expense of the process of
production would be saved, slightly to diminish the
amount of one of the joint products without affecting
the amounts of the others.

In the fixed proportions case, joint products may be correctly
treated as a single product. When the output proportions are
variable , (many seemingly fixed proportions products such as beef
and hides have long-run variable proportions through selective
breeding) the marginal cost may be determined (as Marshall sug-
gested in § b above) by varying the output of one joint product
and observing the direction of change of total cost.

In motor carriers there are numerous examples of Marshallian
joint cost and whether these are joint products in a technical

55



sense is an empirical question. The principal example of
Marshallian joint products are the head-haul and back-haul. TIf
there were data available on empty mileage by commodity and costs
by category, this would not be an insurmountable problem. The
head-haul and back-haul might seem to be a fixed-proportions case.
On reflection they are variable-proportions because head-haul, and
back-haul are produced in the fixed proportions only for two
points and a single commodity and fixed commodity demands. The
use of a translog joint cost function allows us to allocate cost
for joint products (or nonseparable products) if output data -
data on ton miles back-haul and ton miles head-haul by commodity -
were available.

There are other examples of Marshallian jointness in motor
carriers; for example Taff notes:

Two other examples of joint costs in the motor-carrier
industry include the vehicle time consumed in running

to and from pickup and delivery stops, and the so-called
"contact time'" on multiple shipment stops in collection
and delivery service. The latter includes the time
consumed at the shipper's or consignee's place of business,
in starting and stopping the truck, locating the receiver
of the freight, receiving instructions as to the location
of freight, and other miscellaneous delays.

Taff also classifies peak-offpeak use of terminal facilities
across the yearly or diurnal cycle as joint products:

Still another example of joint costs is found in motor
carrier operation. Vehicles on terminal facilities
purchased to meet transportation demands at the peak
hours of the day or during peak seasons of the year are
available to serve transportation demands coming at off-
peak hours or off-peak seasons......

To sum up the subject of joint costs, there is no justi-
fication from a cost-of-service standpoint for distri-
buting any more of these joint costs to any one unit of
output resulting from the same operation than to any
other unit of output resulting from the same operation.
Furthermore, joint costs do not lend themselves to a dis-
tribution on the basis of directly assignable expenses,
for no directly assignable expenses are present in a
strictly joint-cost operation.
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The assumptions made in Taff's statements are: 1) The pro-
ducts are actually joint in a technical sense; 2) There is no
method of allocating joint costs. The first assumption in testable
and the second is true only if an output variable cannot be defined
and measured for each category.

2.3 THE THEORETICAL PROPERTIES OF THE JOINT COST FUNCTION

This section specified the properties of the cost function
which we sill estimate in a somewhat more formal way than in

Section 1.0.

2.3.1 The Transformation Function

The transformation function is defined by the implicit

function
F(Q,X,t) =0 (2.10)
where
Q = [Q,---»Q,] & vector of output
X = [Xl,...,Xn] a vector of inputs

t = time, a variable included to take into consideration
shifts in the frontier over time due to technological
change.

If the transformation is strictly convex in inputs, there
exists a unique dual, joint cost function

G(Q,x,t) (2.11)

where

w = [wl,...,wn].
Shephard's lemma defines the dual cost function as

n
G(Q,w,t) = mi PaR 2.12
(Q,w,t) min jzl wJ j ( )
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This dual cost function must equal the cost minimizing vector of
factor inputs and the vector of cost minimizing inputs must equal
the partials of the cost function with respect to factor prices

3G (Q,w,t)/ow = X* (2.13)
where 3G(Q,w,t)/9x = [BG(Q,w,t)/awl,...,aG(Q,w,t)/awm] and

X* = [X L5 X3]

*
12

The assumption of cost minimization is testable, through the
imposition of degree-one homogeneity in factor prices on the cost
function, using a likelihood ratio test.

2.3.2 Returns to Scale

The assumption of constant returns to scale may be treated
as a testable hypothesis; if

F(kQ,kX,t) = F(Q,X,t) = 0. (2.14)

it follows that

n
G(kQ,w,t) = min Y w.kX. (2.15)
j=1 J )
n
= k min w.X
" ng 3%
= kG(Q,W,t)
and conversely 8) implies 7). The application of this definition

to the joint cost function is discussed below.

Economies of scale show how the firm's underlying technology
reacts when all inputs are increased equally. For cost functions,
economies of scale relate changes in total cost to increase in
output brought about by given percentage increases in inputs.

38



A firm experiences economies of scale when a given percentage
increase in inputs causes a greater percentage increase in output;
for example, a 10 percent increase in inputs might cause a 15 per-
cent increase in output. On the cost side economies of scale show
up as less than proportional changes in cost as output increases;
if output increases 10 percent a cost increase of 7 percent indi-

cate scale economies.

For multiple outputs, a variation in definition is necessary.
In the case of a small output the parameter of interest is the log
derivative of the cost function with respect to output or the
elasticity of cost as output is increased

Q
g (2.16)

In the multi-output case we are interested in the behavior of cost
as all output is increased and so the parameter of interest is

n
e = 3y 31nC/31nQ; . (2.17)
i=1

For example, the translog joint cost function becomes

L = a, * X2 + Gllanl + Glzanz + plllnw1 + plzlnwz. (2.17a)

The translog joint cost function may also be used to compute
values for cost, scale economies and other values of interest by
using the actual levels of output of a firm. For example, to
estimate scale economies for the ith firm we can substitute values
of output and inputs for that firm into the fitted cost function
to estimate the individual scale economies it faces. If the
underlying production technology is not homothetic (seperable) we
cannot uniformly characterize scale economies over the entire

range of possible outputs.
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2.3.3 Output Measurement

A question that often arises in studies of motor carrier
proudction technology is the correct unit of measurement for output
ton-miles. This question may be posed statistically as one of
whether or not there exist distinct and separate indices of input
and output.

Let the transformation function be
F(Q,X,t) = F[J(Q),X,t] =0 (2.18)

where J(Q) is a scalar function of Q. This function is an implicit
function

F[J(Q),X,t] = J(Q,t) + k(X,t) = 0. (2.19)

If there exists an output index, J(Q), the existence of an input
index k(K,t) is also implied. 1If both indices exist, the trans-
formation function F(Q,X) is input-output separable. If separa-

bility exists, as neo-classical theory assumes, then all outputs
are produced jointly and F(Q,X,t) is input-output separable and a
single output measure is appropriate.

2.3.4 Separability and Jointness

The key theorem in duality theory shows that if the cost
function is weakly input-output separable, the transformation
function must be separable in inputs and outputs. Weak separa-
bility implies only that outputs are separable, not that the cost
function is separable in factor prices. Separability requires
that factor price-output interaction coefficients all be zero,*

(o =0).

1]

Denny and Fuss argue that the conditions imposed by the use of
translog functions is more restrictive than one might suspect

a priori. In particular, they have shown that the linear separa-
bility conditions for the interpretation of the translog as an
exact function require either a Cobb-Douglas function of translog
aggregates on a translog function of Cobb-Douglas aggregates.
Recall that our interpretation is that the translog is a differ-
ential or numerical approximation.
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2.3.5 Estimation and Shephard's Lemma

The joint cost function may be estimated using the first order
conditions implied by profit maximization. Let the cost functions
be

G(Q,w,t) (2.20)
Shephard's lemma is
BG(Q,w,t)/awj = X? j=1,...,n. (2.21)

Under the maintained hypotheses of constant returns, competitive
product markets and cost minimization, an equation for each of the
m outputs may be derived. If these two hypotheses are not ful-
filled, the m equations have no useful meaning. The factor share
equations and the joint cost function may be estimated simultan-
eously. This allows a number of a cross-equation coefficient
restrictions to be applied that result in more efficient parameter
estimation because all available information is used to estimate
them.

The translog cost function is

m
InC = oy + ¥ a;1nQ, +

n
2z, j§1 lenwi (2.22)
h m n m
+ 1/2 igl jzl Gijanianj + 1/2 igl j§1 Yij
m n m
lnw, lnw, * 12=:1 jgl pijanilnwj + jzl Yitlnwj .t

m
+ Y 65, InQ vt o+ 1/2y, oot

i=1 't
where
a, = cost equation intercept,
al,Bj = first order parameter, m+n,
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6..,Yi.,p. second order parameters,

1377137743
6it’Yit’Ytt = technological change parameters.

If Shephard's lemma holds and the firm minimizes cost, the
cost function will be homogeneous of degree one in factor prices.

This implies the following coefficient restrictions:

T

Yy 8., =1 (2.23)
=1

n

J'gl Y13 © 0

n

321 Piy © O

2.3.6 Factor Cost Shares

Shephard's lemma says that

91nC

o1lnw.
]

= (3C/3w,)w,/C (2.24)

and these derivatives must equal a vector of cost minimizing input

quantities factor in equilibrium

M. = w.X./C i=1,..., 2.25
; wJJ/ J n ( )

where Mj is the jth factor share in total cost.

The translog cost share relationships may be written
= ¢J
M. Cw (2.26)

where

c) = 31nC/31nw.
W j

Shephard's limma allows us to substitute BC/awj for X; where X%
represents the optimal (cost minimizing) employment of X.. This

substitution leads directly to the factor cost share equation.
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The cost function must be linearly homogenous in factor
prices if costs are minimized. The hypothesis of constant returns
to scale can be tested by imposing constant returns and defining
an appropriate likelihood ratio test. Constant returns require
that

m

Y o, =1 (2.27)
i=1 1

m

551 S

m

ggl i

The cost function is regarded as a second order approximation
to any cost function. Therefore, the parameters of the estimated
function may be interpreted as the partial derivatives of the
underlying function evaluated at the point of approximation.

2.3.7 Concavity

A function f£(X) is concave if
f((l—k)X £ X)) 3 (L-KEX) + KEQX') - 0 < k < 1 (2.28)

and any X and X'. This means if a function is concave, that at any
place along its linear approximation between X and X' the actual
function always exceeds or equals the value of the approximation.

A function is strictly concave if this relationship holds with

strict inequality. This means that the actual function is always
greater than the approximation.
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£(X)

Xi Xi*
FIGURE 9. CONCAVITY

Any differentiable function, such as f(X), is strictly concave
if for any X and X'

* n *
£X) - £X) < _21 £ (X - X)) (2.29)
i=

where the fi are the n partial derivatives of the function evalu-
ated at a point Xi'

Strict convacity requires a negative definite Hessian. This
can be shown by expanding f(X) around X using a Taylor's series

expansion
n
F(X+V) = £(X) + X £V, + 1/2 v'Hv (2.30)
i
*
where v = (xi-xi) is a vector and H a matrix of partial derivatives;
since
* n *
£(X) - £(X) < ¥ f.(X.-X.) (2.31)
& it i
i=1
then
* n *
£(X) - £(X) - ¥ £.(X-X;) <0 (2.32)
i=1
and substituting
*
v = (Xi—Xi) (2.33)
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we obtain the left side of 2). Since it must be negative and
therefore

% n %
£fX)y - £X) - .2: f.(X.-X.) = 1/2 v'Hv (2.34)
1:

then 1/2 v'Hv < 0 since

* Il *
£X) - £X) - ¥ £,(X;-X,) < 0. (2.35)
i=1

Concavity of the Joint Cost Function

The joint cost function must be concave in factor prices and
this requires that the quadratic form be negative (semi.) definite.
The requirement may be stated mathematically as

v'Hv < 0 (2.36)

where -
v' o= [BG(Q,w,t)/Bwi,..., aG(Q,w,t)/awj]

and the ijth element of H is

Hy; = (aZG(Q,w,t)/awi awj) . (2.37)

Stated another way this means

n n

V.V, < 0 iff V,.,V. > 0. (2.37a)
i1 §51 Y13 - Lo

If the concavity condition is met, the matrix H must have non-
positive eigenvalues.*

Given any square matrix H an eigenvector or characteristics vector
is some nonzero vector such that
Hz = Az

or H(1-2)z =0
where Xj is an eignevalue or characteristic root of the matrix H.
The eigenvalues of a negative semidefinite matrix are negative or
zero valued. Furthermore, it is also true that the trace of a
square matrix denoted by Tr(H) is the scalar

(footnote continued on next page)
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2.3.8 The Elasticity of Substitution and Allen-Uzawa Partial

Elasticities of Substitution

In a two factor world the elasticity of substitution, o,
measures the "ease" with which one input may be substituted for
the other and ranges between zero and plus infinity. The elas-
ticity of substitution may be seen geometrically as the slope of
the isoquant for different input combinations. The isoquant
slope represents the ratio of marginal products.

MRTS = - (dxi/dxj) = fi/fj (2.38)
where
Q = f(Xi;Xj) i,j=K,L
and
£, = 9Q/08X, .

The elasticity of substitution in a two factor model is

d(xj/Xi) d(fi/f.) o
°T TX7X. // f_/f? 1,3=K,L (2.39)
j 1. i’7j ‘

The elasticity of substitution may be defined using the
partial derivatives of the production function:

£.£, (X.f. X.£.)

5 - -4 Rl 5 M b
X. X, (f..£% - 2£..f£.£. + £..£2)
i%5 N iiT; ij5itj jivi

i,j=K,L (2.40)

*(Cont'd from previous page)

n
Tr (H H...
() Hy

The trace of a matrix is equal to the sum of its eigenvalues and
the determinant of a matrix must equal the product of its eigen-
values; for the concavity requirement to be fulfilled we must
have Tr(H) < 0 and det |H| < 0.
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The negative sign insures that o is always positive or zero since
the term in parentheses in the denominator is always negative.

The elasticity of substitution is inversely proportional to the
change in the slope of the isoquant as input ratios change. The
limiting values of o, zero and plus infinity, occur when the iso-
quants form right angles (when o is zero) or straight lines (when
o is infinite); it is a unit-free number unrelated to the units in
which inputs and outputs are measuréd.

The Cobb-Douglas production function has an elasticity of
substitution that is constant and equal to one. This is a special
case of the constant elasticity (CES) function for which the
elasticity of substitution is constant but not necessarily unity.

Partial Elasticities of Substitution

The discussion on the elasticity of substitution assumes that
there are only two inputs -- what happens if there are multiple
inputs? The concept carries through as the partial elasticity of
substitution or Allen-Uzawa Partial Elasticity of Substitution.

Assume a single output and n inputs Xj j=1,...,n

Q = £(X{,...,X).

Let
Xif1
k1 - Z
where
n
7 = Z lei
=1

for functions that are homogenous of degree one the summation of
ZKi=1. Let the bordered Hessian of the production function be
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£, £, e £ £
£, fpy eeees £ £
£i0 gy ceen £
H= |- : : : (2.41)
fn
far fag oo fn O

Let Hij represent the cofactor of H. The partial elasticity
of substitution between factor inputs Xi and K. is

-1
X.£f./X.X., H,.H 2.42
J J/ 1] 1] ( )

Q
)
L1
i
Mo

j=1

Partial elasticities of substitution are symmetric, so that

Uij = Oji (2.43)

For two inputs the partial elasticity of substitution reduces to
the two factor elasticity of substitution previously defined. It
can also be shown that

g.. <0 (2.44)

and
(2.44a)

since kj > 0 some of the partial elasticities may be negative, but
the elasticities and weights must have a positive sum. We infer
that the positive elasticities outweigh the negative ones.
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The inputs Xi and Xj may be said to be competitive (substi-
tutable) or complements depending on whether the partial elasticity
is positive or negative

PARTIAL ELASTICITY OF SUBSTITUTION INPUT CLASSIFICATION
Oij >0 Competitive
.. <0 Complements
1]

This definition of the partial elasticity of substitution
will be used in the empirical section of this paper.

~ In terms of the parameters of the joint cost function, the
partial elasticity of substitution is defined

2
o G(a G/aw, awj\
ij (aG/ wj)(aG/ W)

(2.45)

Because of the correspondence between parameter values and partial
derivatives this becomes

- 5
i 1+ Biej , (2.45a)
with variance,
. v(ij)
v(o5) = — (2.45b)
(8585)

2.4 OTHER PROPERTIES OF THE COST FUNCTION

2.4,1 Isocost Functions

A goemetric interpretation of the cost function that offers
some insight into the behavior of the multiproduct firm is the
isocost curve examined in output space.

Assume that there are two outputs Q1 and QZ’ two factor in-
puts with prices Wy and Wo
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C = g(Q;,Q,,W;»W,) (2.46)

The isocost function represents a line of constant cost. It
is found by taking the total derivative of the cost function

- 28() 3g(-) ag(*) 9g () -
dcC an dQl + SQZ dQZ + awl dWl + dez 0.
(2.47)

There are no changes in cost along an isocost and also no

changes in factor prices so the isocost reduces to

dc =0 - 2g(*) 9g ()
dc e dQ, + o dq, - (2.48)
dw. = 0
i
i=1,2

The isocost function has the following slope in output space

(Q;5Q,)

B ag(')/aQZ

When the isocost curve is shown in output space there are three
possible configurations it may assume. It may be concave (curved
away from the origin), convex (curved toward the origin) or a

straight line.

A concave isocost function implies that specialization
causes relative costs to increase; that is, more of the two outputs
can be produced from the same cost by the selection of some com-

bination of the two.

The convex isocost implies that specialization is associated
with decreasing relative cost and is therefore advantageous to the

firm.

No curvature - linearity - indicates no advantage or dis-

advantage to specialization.

50



ag(')/aQZ _ dQl
& Slope - 8g(°)73Q? = dQZ

CONCAVITY IMPLIES INCREASING
RELATIVE COST TO SPECIALIZATION

FIGURE 10. CONCAVE ISOCOST

Slope - °8(:)/3Q, 44

ag(')/an dQZ

CONVEXITY IMPLIES DECREASING
RELATIVE COST TO SPECIALIZATION

Q,

FIGURE 11. CONVEX ISOCOST

Slope - Bg(-)/an . dQ1
ag(');an ac;

LINEARITY IMPLIES CONSTANT
RELATIVE COST TO SPECIALIZATION

Q,

FIGURE 12. LINEAR ISOCOST
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The curvature of the isocost curve is determined by the

second derivative.

d"Q, (2.50)

32g(+) ag()2  23%g(") 2g

2 2 3
b, 250 2g(0? 2g(0)
2Q’ 0Q, 3Q;3Q, ?

(
Q, ao% 0Q, Q

This expression will be positive if the isocost is concave and
negative if the isocost is convex.

2.4,2 Factor Price Elasticities

The elasticities of substitution imply certain elasticities of
derived demand for factor input and conversely. The price elastic-
ities are given by

nyg = Myogg = (rgy v MM /M, it (2.51)
and
niio- Moy T (Yii My Mij)/Mi (2.52)

where the y coefficients are the coefficients of factor prices in
the cost share equations and own and cross-price elasticities in
the joint cost function. If the cost function is concave in factor
prices, the elasticities of substitution of inputs for themselves
the o;; must be negative. Concavity can be determined at the firm
level or in the aggregate by evaluating the Hessian determinant;
the Hessian must be negative semi-definite if this condition is
satisfied. See Humphrey and Moroney for further detail.
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3. PROBLEMS AND PROCEDURES OF ESTIMATION

3.1 HYPOTHESIS TESTS WITH MAXIMUM LIKELIHOOD ESTIMATION

Simple Hypotheses

The most common way of testing the statistical significance
of hypotheses in econometrics is with a Student's 't' test. How-
ever, this procedure is appropriate only when the test involves
the significance of a single values - such as regression coeffi-
cients or significant differences between the means of a distri-
bution. A more general formulation requires us to assume some
parameter space Q, in which the parameter y (the mean) lies. This
space may consist of a set defined as the real number line

Q= {p; - © < p < o}

The null hypothesis is a test of Ho= g where p is a point on the
real number line. This situation is usually handled with a 't'
test, and represents a simple hypothesis because it formulates the

test around a single point in the parameter space Q.

3.2 COMPOSITE HYPOTHESIS

When the null hypothesis involves a region in parameter space,
a subset of the entire parameter space (universe), the hypothesis
is a composite one. An example of a composite hypothesis is one
that has two (or more) unknown parameters. Let  represent a two
dimensional parameter space

Q = {(u,oz); - ®<pup<e 0<o<w}

If we formulate an hypothesis about the parameter py and omit any
hypothesis regarding 02 (the variance of the distribution) the
relevant parameter space is a subset of the entire parameter space
w where

w = {(u;oz); Mo M, 0 < b <w},
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This formulation of the null hypothesis means that w is a straight
line in Q; a formulation that postulated some small value for 02
would represent a point in 2. The former is a composite hypothesis,
and the latter a simple one. The 't' test is appropriate for tests
involving simple hypothesis, while composite hypothesis require
something more general such as Scheffe's F test or the likelihood

ratio test.

3.3 THE LIKELIHOOD RATIO

The likelihood ratio test for a composite hypothesis (such as
the one represented by w) is

ol =

-n/2 n
L) = (2ro”)  exp ( A cxi-uo)z/crz)

where the Xi elements of the vector X.

Taking the natural log of this expression

- n/2 log Znoz + (Xi-uo)z/o2

Nl

OE

1

in order to derive the maximum likelihood estimator we take the
logarithmic derivative of the log likelihood ratio

= 2, 4
1§1 (Xi'uo) /0

-n/Zc2 +

S

Solving the derivative for 02 we have
2 I 2
o" = T (Xjru)/m
i=1

This solution is substituted back into the log likelihood function

~ R 18! n/2
L(w) = e n/2 <2ﬂ/n .2: (Xi-u0)2>

i=1
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The caret over w denotes the fact that the likelihood ratio is at
a maximum when u and 02 are restricted to be in w; if this con-
straint is not imposed My is replaced by X - the sample mean - and
this defined the unrestricted likelihood. The ratio of these
likelihoods is the likelihood ratio

L = L(@)/L(Q)

fl
AN
™M=
~
>~
'—I-
]
>~
—
™o
™M
=
r~
>~
H.
I
=
@]
p—
~_
~
)

vwhere

0 < Q<1 L =1 iff Hy = X

The test statistic L is distributed as 't' with n-1 degrees of
freedom,

The example shows that maximum likelihood estimation may lead
to familiar tests of significance. In the case of linear regres-
sion, maximum likelihood leads to solution formulas identical to
those that arise in the least squares procedure. Least squares
esitmation does not impose any a priori assumptions about the dis-
tribution of estimated parameters. It is the tabulated theoretical
distributions necessary in tests of hypotheses that require these
assumptions. On the other hand, maximum likelihood estimation
forces the distribution of single equation maximum likelihood
estimators to be normal.

3.4 THE LIKELIHOOD RATIO IN REGRESSION ANALYSIS

In a linear regression the most common test is that of dis-
tinguishability of coefficients from zero.

Let
= {B; - =< B < o a2 0} (3.1)
and
* *
w={B; B =0, o2 > 0} (3.2)
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where

g = [8081 o Bk]

and

B* = (ByBy --- BY) k < k =1
The unrestricted likelihood function is
L(Q) = (1/210)™ exp(- 1/2 GZ(Y*XB)l(Y-XB))dY;

and for the restricted regression,

L(w) = (1/210)" exp(; 1/2 cZ(Y-XE)l(Y-XE))dY

where
X X1k
t = =
Y [Yl . Yn }X
1 an R, Xnk
*
The likelihood ratio to test the null hypothesis of 8 = 0 is
~ ~ *
L = L(R)/L(w) L=1 iff B=0
_ n/2
- (SQ/SN)

where S is the determinant of the variance-covariance matrix of
the unrestricted (SQ) and restricted (Sw) regressions respectively,
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each divided by their respective variance matrix determinants;*

-2 1n L is asymptotically distributed as xz with degrees of free-
dom equal to the number of restrictions. Of course, the level of
significance in a series of nested tests such as those for separa-
bility, etc. are not independent at each level. Therefore the
appropriate method to take this into account is to select an over-
all level of significance for the n set of tests and treat each
individual test as having a level of significance equal to 1/n
times that overall level. Scheiffes F and the 1liklihood ratio are
two possible methods of dealing with this test situation; a third
is the Bonferroni 't' test. The latter was not used because
Christensen (1973) has shown that the power of the test is quite
low in cases in which the independent variables in the equa-
tion(s) are highly correlated - as they are in this case. We have
chosen to ignore this problem in the interests of simplicity.

3.5 ESTIMATION BY FULL INFORMATION MAXIMUM LIKELIHOOD

Full information maximum likelihood (FIML) is a simultaneous
method of estimation. This means that FIML estimates a system of
equations - two or more equations - as though it were a single

*

If the null hypothesis is true, Sp and S, are distributed as XZ
using an argument based on Cochran's theorem (see Wilks pg. 406),
and we can deduce that the likelihood ratio has the distribution

(1 + k-x%)/(n-xy 3)"1/2n
(n-k) (S, - 8,0/ (k-k) s

L

~

where S

9]

S is the Snedecor distribution (Wilks p. 186) which is a ratio of
Gamma distributions; tables of the Snedecor distribution are
available and Pearson's Tables of the Incomplete Beta Function
may also be used given correspondence found in Wilks (pg. 187).
Fortunately a simple transformation makes it unnecessary to use
these relatively arcane dis%ributions because - 21n L is asym-
ptotically distributed as X“ with degrees of freedom equal to the
number of restrictions imposed.
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equation. The FIML method uses an estimate of the system covari-
ance matrix of distributions £. The I matrix includes any error
associated with the specification of equations, so that any errors
in specifying one equation is propagated throughout the system.
This is a well known defect of using system estimation methods.

We conclude that the advantages outweigh the disadvantages in this
application. In particular, a major advantage is that FIML is not
sensitive to which equation of the factor share set is deleted.

It is also less sensitive to problems of collinearity than least
squares methods and lastly, FIML is more efficient (has a smaller

variance of the estimates) than least squares estimation.

The FIML method is now well known and widely used and details
on its use are available in almost every intermediate and advanced
econometric textbook. This presentation follows Johnston and
Theil. It is included here only as a matter of convenience to the

reader.®

Consider the following equation system written in implicit
form

BYt + FXt = uy

where Y is an n x g matrix of observations on the endogenous vari-
ables (variables determined within the system of equations) and B
js a g x 1 vector of endogenous coefficients; I is a k x 1 vector
of exogenous or predetermined variable coefficients, u, is the

vector of error terms or disturbances.

Because FIML is a system estimation method rather than a single
equation method, the coefficient of determination R2 is not dis-
played in the output of the estimation process, because R2 has
no valid meaning in a simultaneous equation system, and may have
a negative value for correctly specified models. The lack of
V%Iidity of RZ may be explained by examining the equation for RZ;
RZ = 1-e'e/y'y. We know that 0 < R4 < 1 will be satisfied only
when e'e < y'y. In simultaneous equation systems e'e > y'y is
possible leading to negative R2, so this statistic has no
usefulness in simultaneous equation systems. See Christ, p. 319.
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We assume that the expected value of the vector of error terms

is zero
E(ut) =0
and the covariance matrix is
1 =
E(utut) z
and

det > 0.

We assume that the error terms are distributed as standard
normal with mean zero and covariance matrix ¥

u,. ~ N(O,1)

t
where
flu) = 27 G/2 dety 1/2 exp - 1/2u£2-1ut.

It is assumed that the vectors are not serially correlated. The
likekihood function is

n
to1 £l
This makes the likelihood function for Y = (yl, ceey yn)
P(Y) = 20 "%/2(det B)M( ger 3y P/2
L -1
exp [- 1/2 tgl (BY, + IX)' 2 (By, + Fxt)J .

3.5.1 The Use of Pooled Cross-sectional and Time Series Data

The data represent a "panel" of observations on all trucking
firms that existed continuously throughout the ten year period
1965-1974. There were a total of 252 such firms in each of the

ten years for a total number of observations of 2520.
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Due to the large data set, and across-equation coefficient
restrictions, FIML is used as the estimation technique and we expect
that any violations of assumptions would not lead to serious
problems. Nevertheless, we should be aware of the consequences of
violations of the assumptions and of possible alternative speci-
fications, regression equations.

There are several specification options available to combine
time series and cross section data: (1) We can estimate each year
separately; (2) We can pool the time series and cross-section data
by grouping all years for the same firm together; (3) We can pool
all firms within a given year together: (4) We can use dummy
variables to create separate intercepts for each year or each
firm or both.

Choice (1) does not utilize all of the available information
to estimate parameters, but because of the problems inherent in
pooling, this would be the choice of some. The disadvantage of
not pooling is that all of the econometric procedures--such as
parameter restrictions--would have to be repeated within each
year; the advantage is that this is a good way to get initial
parameter estimates and test the estimating algorithm. In addition,
it is of interest to observe how coefficient estimates behave over
time.

The second method requires grouping all data for a single firm
in a single year together. In the context of the regression model.

Y = XB + e

this specification means that

1T 11,Y2 2 oo Yoo Yy oo YNT]
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.1 2 K|
11 X X11
X%Z xiz ) X§2 i=1,...,K Regressors
X5 j=1,...,N Firms
1 2 K k=1,...,T Years
Y10 X7 - Xqp ’
1 2 K
Nt XNt - Xyp

where X;k refers to the ith regressor for the jth firm in the kth
year

B' = [Bl’...’ Bk]

and

e!' = e e . e

11° "> 61T621, 2T " N1°® - °» eNT

It is common to assume that the observations for individual firms
are indepéndent of one another but that the error variance is non-
scalar due to some relationship between the error term and the
size of an explanatory variable - heteroscedasticity. In the time
domain, error terms are likely to be autocorrelated. The presence
of heteroscedasticity means that

_ 2
E(ejkejk) = cj

while independence within a time period means
. - A0
E(ejkeik) 0 (j#1).
Autocorrelation means that

®jk T Pjk-1 * Uji -
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3,5.2 Autocorrelation and FIML

One of the assumptions underlying the FIML estimates is that
the error terms are uncorrelated; this assumption is likely to be
unfulfilled. What then? This section deals with the problem of
autocorrelation in simultaneous equation systems. Autocorrelation
in single equation causes an underestimation of the absolute value
of the regression coefficient (the estimated regression line is
flatter than the true relationship, in a univariate linear rela-
tionship). In simultaneous equations systems there is a tradeoff
between simultaneity and autocorrelation so that we often must to
choose to deal only with one problem, and some believe that simul-
taneity may be less important than autocorrelation.

Consider FIML the application to a system with a first order

autoregressive process. Rewrite the implicit model

BYT+ PXt = ut
let

X{ = [Y, Z,] and A = [BI]

then we can rewrite the system as

The autogregressive process 1s

= +
u, Rut_1 et

where R is a matrix of autoregressive parameters the autoregressive
error term €, are joint normal - €¢ ~ N(0,Z).

The implicit system may now be written
AX' - RAXi = E'

1 = ' =
where X (XyoeeesXp)y X1y (Xy_95--

variables lagged one period) and E' = (el,...,en).

.,Xn_l) (e.g., all independent
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The probability function is
P(et) = (Zﬂ)_n/z(detz)-l/z exp(—l/ZeéZhlet).

Taking logs of the likelihood function we have

(@]
1}

nlog|detB| - n/2 log(detz) - 1/2'cr[(XA'=X1A'R’)Z-1

(AX' - RAXi)]

C + nlog|detB| - n/2 log(detxr) - 1/2tr{£ﬂlAX'XA’

It

- ' ' ' Rt
2RAX1XA + RAX1X1A R'}

where C is a constant.

We may also specify a second order autogressive process
following the same procedure. The presence of a nonzero R matrix
can be tested using a likelihood ratio against the version without
the autoregressive specification.

Goldfeld and Quandt (GQ) performed a number of Monte Carlo
experiments on simultaneous equation systems with autocorrelated
disturbances and some models with collinearity as well. They
tested ordinary least squares (OLS), two stage least squares
(TLS) and four different versions of FIML, labelled FIML1 through
FIML4 and defined as follows:

1) FIML1 - equation by equation application of FIML where
equations are specified with a first order autoregressive
process,

2) FIML2 - simultaneous estimation of equations without the
correlation for autocorrelation,

3) FIML3 - simultaneous estimation of parameters and auto-
regressive process, and

4) FIML4 - simultaneous estimation with autoregressive
process assumed to be know a priori.
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The mean square error (MSE) for each case was then computed.
On a coefficient-by-coefficient basis the ranking is

1. FIML3
2. FIML1
3. FIML4
4. FIML2
5. TLS
6. OLS

Their result indicates that, in the model tested, it was more
important to account for autocorrelation than simultaneity - FIML1
ranks above FIML2 and FIML4. The FIML algorithm produced worse
estimates of the equation intercept than ceefficients and the rank-
ings over a wide variety of cases, sample draws and assumptions
about collinearity including the intercepts were (mean sum of ranks
in parentheses)

1. FIML4 (20.7)
2. FIML3 (23.5)
3. FIMLL (30.3)
4. FIML2 (32.5)
5. TLS (36.0)
6. OLS  (46.0)

Omitting the MSE of intercepts the ranking was unchanged but pro-
duced larger differences in mean rankings.

The GQ book has additional useful discussion of the proper-
ties of various estimators. Of course FIML4 is not a realistic
specification because we never know the autoregressive process a
priori, and FIML1 is not realistic because we would never apply
FIML equation by equation. Lastly, note that these conclusions
apply only for the specific models and assumptions used in the
Monte Carlo experiments. The only way to be sure that these re-
sults apply is to do our own Monte Carlo experiments with the
model we are estimating, but we can cautiously infer that FIML3
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would provide efficient estimates and formulate null hypothesis
based on this inference.

3.5.3 Heteroscedasticity

Regression analysis assumes that the variance of regression
error terms is constant. The general linear model - the form in
which the example translog production and cost functions were
specified - 1is

Y = XB + e

where Y is an n x 1 vector of observations on the dependent vari-
able, X is an n x k matrix of observations on the k regressors,

@ is a k x 1 vector of regression coefficients and e is an n x 1
error vector about which we assume that E(e'e)=0§1, where I is a
k x k identify matrix. Under this assumption we have homoscedas-

ticity and the covariance matrix is scalar.

If E(e'e) # OZ we have heteroscedasticy, one of a_family of

demons that regularly attack econometricians, the others being
multicollinearity, autocorrelation, specification error and under-
identification. Heteroscedasticity biases the estimate of the
coveriance matrix, so that the estimator is not BLUE because it
does not have the smallest variance among linear estimators.

So, heteroscedasticity biases the estimate of the OLS error
covariance; what operational significance does this have? First,
the estimate of the slope remains unbiased. Secondly, tests of
significance--such as t and F tests--are unvaried in the presence
of heteroscedasticity because these tests assume that both the
coefficients and their variances are unbiased. Thirdly, the
direction of bias depends on the relationship between the error
terms and explanatory variables. If these is a positive relation-

ship it causes an underestimate of the error variance and a nega-

tive relationship an overestimate of the error variance.
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3.5.4 Heteroscedasticity and Autocorrelation

There is no reason to believe that econometric problems occur
singly. If we have both autocorrelation and heteroscedasticity
not only is the covariance matrix nonscalar but the off-diagonal
elements are nonzero. The effects of autocorrelation and
heteroscedasticity are complementary for cases in which the size
of explanatory variables and error terms are positively related.
Both problems cause understatement of the true error variance and

usually produce incorrectly narrow confidence intervals or hypo-
thesis rejections.

Epps and Epps found that the Durbin-Watson statistic is not
sensitive to the presence of heteroscedasticity in that neither -
the size or power of the test is adversely affected. Koerts and
Abrahamse showed that the modified VonNeumann ratio is superior
to the Durbin-Watson statistic under some circumstances, since it
rejects the null hypothesis correctly more often than the Durbin-
Watson. The two statistics are closely related; the Durbin-Watson
is (n-k-1)/n times the modified VonNeumann ratio; see Theil for
additional details.

Autocorrelation does cause serious problems in the application
of some frequently applied tests for heteroscedesticy such as the
Goldfeld-Quandt and the Glejser tests. This was especially true
with negative autocorrelation. The two tests for heteroscedasticity
became valid again where autocorrelation was tested first and, if
present, correlated using the Cochrane-Orcutt procedure.

Application of Coefficient Restrictions

In estimating the translog joint cost function, the logical
order is to begin by estimating an unrestricted function - whatever
we conceive the most general case to be. Secondly, we impose cost
minimization by applying homogeniety of degree one in factor
prices. Thirdly, we impose, homogeneity in output. Fourth, we
combine factor price homogeneity and output homogeneity. Fifth,
we can test for a Cobb-Douglas with constant returns to scale.
Stages five and six are the appropriate place to test functional
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forms other than the Cobb-Douglas - the multifactor CES for
example. If at any stage we are unable to show that a restriction
is justified, we should accept the unrestricted specification.

Summarizing the restriction tests run by run:

1) General unrestricted translog;

2) Homogeneity in factor prices (cost minimization);
3) Production homogeneity of degree k(or 1);

4) Factor price and production homogeneity;

5) Cobb-Douglas technology with possible non-constant returns;

6) Cobb-Douglas technology with constant returns;
7) Other functions forms with and without Constant Returns.

Two levels of coefficient restrictions are involved in the
estimation process: One, across equation coefficient restrictions
that require certain coefficients to be equal in different equa-
tions; Two, the various theoretical restrictions described above
the validity of which are tested with likelihood ratio tests.¥

*!

The tests described here assume that each succeeding level is
independent of the previous level. Some would argue that this
is not the case. If each test is not independent of the previous
level, a Bonferroni t test is called for in which the level of
significance for the entire set of tests is chosen a priori and
each step has a level of significance that is a fractlon of the
overall level,
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COEFFICIENT RESTRICTIONS IMPLIED BY VARIOUS
THEORETICAL PROPERTIES

COEFFICIENT SYMBOL

ASSOCIATED VARIABLE

a, i=1,...,m
i b ?

OUTPUT Qi

FACTOR PRICE Wy

inj

THEORETICAL PROPERTY

ASSOCIATED RESTRICTIONS

§.. i=1,...,n OUTPUT INTERACTION Q.Q.
i) L_ 1]
j=1, ,N
Y. . i=1,...,n FACTOR PRICE INTERACTION w.w.
1) L. 1)
3_1: )
pj i=1,....m OUTPUT-FACTOR INTERACTION
j=1, , 1

rFACTOR PRICE HOMOGENEITY
(COST MINIMIZATION)

DEGREE OF CONSTANT

k or1
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4. A REVIEW OF SELECTED EMPIRICAL STUDIES OF MOTOR CARRIERS

This section reviews a select few studies of motor carrier
cost. Many studies were not included because there was insufficient
difference between them and those studies included, or because they

are outdated. A full reference is found in the bibliography.

o Klem

This study used the most complete data avaiable prior to the
present one. Klem's data came from the ICC 1974 Form A annual
reports for Class I and II Instruction 27 Carriers.

Klem estimated a long run total cost curve using firm-level
cross section data. His method estimates the scale economies as
the ratio of incremental to average cost; if this ratio is less

than one there exist scale economies.

The sample consisted of data from 510 Class I general freight
carriers that receive more than 75% of their revenue from inter-
state general freight carriage over a three year period and are
required by the Commission to provide additional detailed operating
data on a form known as "Instruction 27'". These carriers are
referred to as Instruction 27 carriers.

When the set of carriers is restricted to those that receive
at least 99% of their revenues from intercity general freight, 359
carriers remsin in the sample; in addition, firms were also
classified according to whether they carry principally truck load
(TL) or less than truck load (LTL) traffic, and by ICC region.

Klem used number of shipments as an output measure. The
independent variables included length of haul, shipment size,
number of pick-ups and deliveries, and a dummy variable representing
the geographical location of the firm. The shipment size coef-
ficient was not reliably distinguishable from one, indicating no
scale economies. Klem argues that any possible errors (such as
measurement errors) would bias the estimates upward, so that the

true values should be closer to unity then the estimated values.
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The sample data was divided into TL and LTL classes and used
to estimate separate cost functions by category; there were 141
LTL and 91 TL specialists. The TL cost function showed that their
cost structure was similar to that of the aggregate sample; average
cost was constant with respect to scale increases. The LTL re-
gression showed that LTL specialists enjoy modest, but statistically
significant, scale economies; for the LTL group incremental cost
was found to be 94% of average cost.

Klem also classified firms by geographic area and included a
corresponding dummy variable for this purpose. The appropriate
covariance test showed no significant difference between geographi-
cal regions despite the fact that some firms had revenues that were
twice the sample average. The larger LTL group showed smaller but
statistically significant scale economies; Klem argues that this
could be interpreted to mean that some firms in this group are
larger than the optimum size.

o Roberts

This older study of motor carrier cost used a sample of 114
Class I, general commodities, carriers operating principally in
the ICC Central Territory, which includes Indiana, Illinois, Ohio
and the lower peninsula of Michigan.

Roberts used average cost per vehicle as the output measure,
which -- it 1s argued -- has less sensitivity to varying traffic
characteristics than other measures. For example, average cost per
vehicle mile is significantly influenced by the percentage of total
traffic that passes through a terminal. The accounting system has
a terminal cost category that represents an average of 15% of total
operating expenses; these were excluded from Robert's cost
computation.

Another problem is the choice of a scale measure - Roberts
chose total assets, because an accounting analysis led him to
conclude that motor carriers did not have scale economies, but that
there was ".., a devious relationship between efficiency and
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financial health which renders motor carrier rate structures highly
suspect and suggests serious maladjustments in rate-cost relation-
ships."

o Emery

Emery's study of scale economies is similar to Robert's in
many respects; using an accounting approach to the scale economies
question, he concludes that:

"Although many writers in the field of transportation

discuss the possibility of the existence of scale
economies in the various modes of transportation, few

adequately define the term. Many avoid this defintional
problem by speaking of diminishing returns to scale or of
economies of large size. BEven the terms used often are

not properly defined and described. Much of this ambiguity
is due to the fact that economists often are not in agreement
as to the validity of this concept. The concept of economies
of scale, ds commonly interpreted by ecbhbmists, implies

not only the fact that there may exist certain economies
resulting entirely from the size of operations for any

given firm. Herein lies the trouble. Many feel that there
is no 1limit, while others feel that there may be but if

there is we will never be able to define the precise limit."

He contends that may writers confuse the concepts of limits
on firm size with limits on plant size, and that, in addition to
other objections listed above both of these are static and short-
run concepts. In regard to short-run firm operations, he argues
that for each fixed plant size there exists some efficient level
of operations. Most common scale economies discussion begins with
the idea of increasing a fixed plant size; if there exists some
absolutely efficient plant size, it may never be known because we
can only observe the effects of relative size. Most discussions
of scale economies focus on relative size, although this distinction
is often subsumed. It may be possible to infer from the data that
some firm size is efficient, but Emery contends that this has little
to do with '"'absolute" scale economies. He argues that it is in-
sufficient to show that large firms are more efficient than small
ones, because there may exist unobservable factors - other than
firm size - which contribute to this apparent relative efficiency.
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Emery's study used 1960 operating data for 233 Class I § II
firms, the Middle Atlantic Territory. Averages were used to
represent the various cost categdries. Using total revenue as a
measure of firm size, 7 groups were identified; the larger carrier
groups had longer average hauls and higher load factors than
smaller firms but there was no statistically significant relation-
ship between these characteristics and the carriers' net profits.
The operating ratios of carrier groups decreased slightly with
carrier size, and larger carriers earned slightly greater profits
per dollar of sales revenue. Capacity utilization was evaluated
using average leased and owned vehicles on hand, divided by total
vehicle miles during a year, giving the average mileage per vehicle;
larger carriers appeared to be more efficient using this criterion.
Part, but not all, of this increased vehicle utilization was con-
cluded to be due to the longer average haul associated with larger

carriers.

An examination of various motor carrier cost categories as a
percent of total revenue, produced three conclusions:

1. Adminstrative and general expense ranged from - 11.4% for
the smallest group to 5.8% for the largest;

2. Total fixed expenditure declined from 27.5% for the
smallest group to 19.6% for the largest;

3. Transportation expenses, maintenance, and depreciation
declined from the smaller to the larger carriers.

No attempt was made to determine if there were statistically
significant differences in these ratios and this is a major flaw
in the methodology. The wage bill declined as carrier size in-
creased, but since larger carriers use more ''leased" drivers, this
expense category seems to be of equal importance for all carrier
groups after adjustment for leasing. Emery concludes by saying:

Analyzing the evidence presented, representing the cost
study carrier operating statistics submitted to the Inter-
state Commerce Commission, there appear to be considerable
scale economies among these carriers. This empirical
evidence in addition to the commonly accepted advantages

of large-scale operations (i.e., organizational advantages,
specialized labor, better qualified managerial talent,
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quantity discounts on particular purchases, and access

to lower financing costs) presents a rather strong case

for the existence of relative scale economies within this
industry. Assuming that a carrier has not reached its
optimum size to serve its present market, or that it
contemplates increasing its market size, then the advantages
from larger size appear to be significant.

o Warner

Warner used a combined cross-section of time series data set
approach to estimate a Cobb-Douglas cost function as a measure of
output Warner uses shipments. The coefficient of log shipments is
the scale parameter and very mild economies of scale were found.
This study is very similar to those by Lawrence and Klem even
though it is much earlier than both of those studies.

o Lawrence

This study uses a group of Class I and II general freight
carriers to examine the question of economics of scale. Lawrence
has been a principal spokesman for the industry in arguing that
there do exist scale economics in regulated motor carriers,
particularly LTL specialists, and that consequently deregulation
would lead to increased concentration. A principal focus of the
study is the contention that previous studies failed to include
firms that were sufficiently large to be representative of the
larger firms in the industry. He also argues that there is a problem
of heteroscedasticity because of error correlation with form size,
although apparently no tests of hypothesis were performed. The
response to the perceived problem of heteroscedasticity was to
partition the sample and estimate separate cost equations. This
situation is the appropriate one for use of tests of aggregation
although apparently this was not done. In summary this study is
very much in the same genre as the studies of Ladenson and Stoga,
Klem and Warner. It is distinguished from those by a possibly

inappropriate partitioning of the sample.
o Ladenson and Stoga

In a study of scale using the production function approach
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economies, Ladenson and Stoga estimate a Cobb-Douglas production
function with cross-section data. The production function was
specified in two different ways; either as output per unit of
labor, or output per unit of capital. The authors advance

several arguments for specifying the equations in this manner, even
though the estimated parameters are theoretically equivalent in
both.

The difference between the usual Cobb-Douglas specification
and theirs is that they include among the independent variables
the log of the variable by which output (i.e., output per unit of
labor or capital) is divided. This makes the coefficient of the
dividing variable equal to the coefficient of capital (or labor)
plus the coefficient of labor (or capital) minus one, and this is
provides a check on returns to scale estimates.

These functional forms impose a unitary value on the scale
parameter that is equal to the sum of the coefficients of labor
and capital. Neither specification allows a test of the hypoth-
esis that returns to scale vary with firm size, but this may be
done using size class dummy variables. Specifications with dummy
variables do not permit direct tests of the hypothesis of equal
factor input coefficients across size class. However, the authors
do specify the estimating equation so such a test may be derived.
Because of extreme collinearity among the variables, regression
specifications in which output was expressed in per-unit labor
terms were impossible to estimate.

Firms were initially divided into ten classes by sorting on
the number of employees per firm. The size classes range from
firms with less than 50 employees to those with more than 2,000
employees. No significant differences in the firm size coeffi-
cients appeared until firms were aggregated into two classes:
those which have less than 50 employees and more than 50 employees;
other taxonomies made no significant difference.

The authors also tried alternate definitions of labor and
capital to test which was more "acceptable', than others and they
experimented with various output measures. They concluded that,
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while ton miles is not the ideal measure of output, it is a ''good"
approximation of the '"true" measure of output; they also concluded
that firms with as few as 50 employees enjoyed increasing returns
to scale. The estimated scale parameter was constant over a wide
range of firm sizes, 50 to 2000 employees and more, and consequen-
tially the authors conclude that firms have not achieved their
optimum size, and that the optimum size is larger than other
studies have suggested.

o Ayala-Oramas

Ayala-Oramas identifies two classes of scale economies: 1)
Returns to traffic density, or "economies of utilization'; and
2) Returns to increased firm size--the usual scale definition. He
recognizes that single-equation models have various limitations
and makes some suggestions for improving single-equation cost
models, but still uses a single-equation for estimation.

A separate set of equations is used to examine economies of
utilization, and economies of scale in motor carriers; additional
equations relating load factors to route characteristics and
short-run output to long-run output are included. He finds no
statistical evidence of economies after difference in capacity
utilization are taken into account. He concludes that observed
between-firm differences in scale economies and capacity utiliza-
tion are due to the firm's scale of operation and the characteris-
tics of the firm's service network.

Ayala-Oramas concludes that large firms may be able to get
routes with more desirable network characteristics than small
firms and that this explains the high load factor commonly asso-
ciated with the larger firms. He recognizes there may exist
difficult-to-quantify cost barriers that result from uneven
economies of utilization across networks, and argues that this
tends to increase concentration and differentiated growth over
time:

The apparent discrepancy between previous cost studies

indicating constant return to scale and studies indicating

minor but statistically significant increasing returns,
can be resolved once we realize that there are economies
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of utilization and that such economies may be associated
with the scale of operations, though there may not be
economies or diseconomies of scale in the production
of transportation capacity.

This could explain the significant scale economy variable for LTL

carriers found in Klem's study.

He feels that since rates are set through rate bureaus under
regulation, regulated rates are typically higher than unregulated
rates. If the service differential opposed by regulated carriers
is worth the rate differential, higher rates could be justifiable.
However, there is no evidence showing that service differentials
do justify higher rates since, where alternatives exist, shippers
often choose private, exempt and illegal motor carriers over
regulated carriers.

Ayala-Oramas classifies inter-city motor carrier output into
three categories: pickup and delivery, line haul, and terminal
operations. Pickup and delivery and line haul output have the
same units of measurement, but pickup and delivery ordinarily uses
less powerful trucks and line haul operations. The line haul
rolling stock are composed of individual production units and that
represents a small capacity with respect to market demand. He
argues that there are scale economies to increased vehicle size
which in turn decline as vehicle size increases. He also argues
that there is some ex ante substitution possible between labor and
capital (the classes of rolling stock and terminal facilities) but
that ex post, the capital-labor ratio is changed primarily by
varying capacity utilization.

Transportation output cannot be stored, is multi-dimensional,
and has associated with it a joint product--the backhaul. Because
of these characteristics, he argues that the long run, line-haul
cost function for motor carriers should be linear and output
separable. Line-haul costs amount to between 30 and 45% of total
trucking expenses (up to 80% in specialized cases), and they can be
divided equally between fixed expenses and running costs. Ayala-
Oramas notes that
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Instead of trying to trace variations in total cost,

the practical analysts have attempted to determine

directly the increase in costs that would occur if

output of one product were expended by one unit,

and production of other items remains constant, or

if one extra ton is moved over the same mileage,

all else remaining constant. Unfortunately, this

method is not valid with the multi-products, made

in more or less fixed proportions with forward trips;

it is only approximate in the data of output dimen-

sion given the high aggregation time of the available

data.

Quality in transportation output is the quantity of "intrinsic
characteristics' embodied in motor carrier output(s) which affect
production cost. For regulated transportation industries, quality
is not a predetermined variable; instead, the price-capacity de-
cision determines quality. This problem is intensified because
cost minimization of a given output is not dual to profit maximiza-

tion, with respect to quality, given prices and quantities.

Ayala-Oramas distinguishes three market equilibrium models
that lead to three separate cost specifications:

1) Cost is a function of output quality and output
price

2) Output is a function of output price, quality and
an exogenous demand shift variable;

3) Quality is a function of output price, input price,
and an exogenous demand shift variable.

In the first case, the cost equation is under identified and
ordinary least squares estimation of cost parameters is biased and
inconsistent. In the second case, the cost function is identified,
but the parameters of the production function may not be recovered
from the cost function parameter estimates. In the third case,
jdentification of production parameters from cost parameters would
also be difficult.

o Johnson

Johnson combines cross-section and time series data to
estimate farm cost functions, and uses analysis of covariance
(ANCOVA) to avoid the ''regression fallacy" or errors in variables.
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He also argues that statistical cost curves may be under-identified
because of Friedman's objection (discussed below).

The ANCOVA approach attempts to account for the variation in
random variables using observable independent variables. This
method seeks to find cost-output relationships corrected for dif-
ferences in time and location. The pooling time series and cross-
section data uses cost data over firms and time allows the intro-
duction of dummy variables for firms and time which sum to zero
and provide identification of the equation. For example, if there
exists N firms and T years, then it will be necessary to estimate
N + T + 2 parameters from N - T observations.

If the underlying assumptions are met, the cost function
estimates have the following properties:

1) Persistent, time-related deviations from true cost
for a given firm are removed from the estimated
cost equation.

2) Deviations from true aggregate cost common to all
firms specific to a particular year, are estimated;
this prevents changes in the output price levels
over time from biasing the coefficient estimates.
Likewise, year to year changes in factor prices
will not affect the coefficient estimates. Dif-
ferences in price level are captured by the firm
dummies, and differences in factor price changes
are captured by the yearly dummies.

Short-run cost functions have traditionally been estimated
using time series data, while long-run functions are usually
estimated using cross-section data. The regression fallacy
may occur because the output variable has observation error
associated with it and Johnson argues that this problem may be
avoided by combining cross-section and time series data.

However, pooling fails to satisfy Friedman's objection.
Friedman argues that cost functions are under-identified because

we assume profit maximization. But if firms face identical factor
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prices--as we would expect under competition--and all firms have
identical production functions, then cost function estimates either
have no variability, or are constant by the assumption of equal
factor and output prices; if this were not true, all firms would
not have identical cost functions. This objection can be answered
by assuming that the equilibrium conditions have stochastic error

terms.

Johnson estimates farm cost function, but the methodology has
potential application in motor carrier research because of the
suggested combination of time series and cross-section data. This
study is outdated now, but deserves inclusion because it addresses
the problems of pooling cross-section and time series.

o Spady-Friedlaender

Prof. Ann F. Friedlaender was a 1976 recipient of a three-year
University Research Contract from DOT; the product of that contract
has been a large number of scholarly papers. This research has
produced econometric models of motor carrier and rail freight op-
erations linked to a regional economic model; this framework will
then be used to conduct policy experiments under various assump-
tions.

The most important contribution in the motor carrier field--
(this also applied to rail)--was that of adjusting output for its
inherent characteristics. Friedlaender and Richard Spady de-
veloped this idea into a full scale empirical procedure and
established that its use produces better (as judged by a likelihood
ratio test) estimates of a motor carrier cost function.

Initially, Spady and Friedlaender assumed that motor carrier
cost functions were quality separable. This means that the effect
of quality variations on output and cost, is independent of the
relative prices of factor inputs so that the factor inputs combine
to produce units of output called effective ton-miles of specific
commodities. The effective ton-miles can vary depending on the
combinations of ton-miles in ''matural" units (unadjusted for
quality). The quality separable assumption implies that the cost
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minimizing bundle of factor inputs does not depend on the com-
position of effective output; that is, factor prices do not affect
the combinations of natural ton-miles, average hauls and average
loads that can be produced for an equal outlay and equal values of
other characteristics. The assumption of quality separability is
prudent from a practical standpoint. To assume otherwise would
require treating each characteristic as a distinct output and
testing quality separability.*

The only drawback to the Spady-Friedlaender work is that they
had to use TRINC's data, and consequently were unable to specify
more than a single output; the hedonic specification may however
substitute cost function used five characteristics in the hedonic
output equation and four inputs.

These characteristics are average shipment size, average haul,
percent LTL, insurance cost per ton-mile and average load. They
are labor, fuel, capital and purchased transportation. They
rejected separability (homotheticity) in both hedonic and non-
hedonic specifications, and also rejected the hypothesis of
constant returns to scale in both versions. The hedonic specifi-
cations proved to be uniformly superior. There were large
economies of scale in the nonhedonic specifications but mild

diseconomies of scale in the hedonic specification, The indica-

tion of diseconomies of scale was accepted, with the caveat that
returns to scale cannot be uniformly characterized for nonsepar-
able technologies.

They also computed the Allen-Uzawa elasticities of sub-
stitution for both hedonic and non-hedonic specifications and
found that all factor inputs were substitutes (elasticities posi-
tive) and that the hedonic specification produced significantly
lower elasticities than nonhedonic specifications; the same
relationship held between the values of factor price elasticities.

*Spady tested the assumption of quality separability with his own
version of FIML and found that it could not always be justified.
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In summary, Spady and Friedlaender estimated a long-run cost
functions for the general freight motor carrier industry using a
translog, hedonic specification. Their research is too varied to
characterize simply, but they made a significant contribution to
motor carrier research because of the translog joint cost specifi-
cation. They show that the Cobb-Douglas or CES functions (cost or
production functions) are inappropriate. The only significant
criticism of the Spady-Friedlaender work is that they specify only
a single output. Overall, this work is excellent and economists
owe them much for the thorough theoretical basis they have given
transportation cost function work.

Critique of Empirical Estimates in Motor Carriers

Estimates of motor carrier cost and production technology
have, in the past, generally been characterized by the use of
single equation, ordinary least squares methods. We can argue that
the cost functions are identified because they are reduced form
equations derived from the simultaneous solution of the necessary
conditions for a profit maximizing firm. These studies would have
benefited from a more explicit mathematical derivation of the cost
functions for a regulated firm, so that efficient estimation,
hypotheses about possible regulatory effects and the underlying
technology could have been formulated.

The production function estimation could easily incorporate
the dummy variable procedure used by Klem and Johnson, and use a
time series of cross-section data for estimation purposes. Ex-
amples of theoretical work from which these suggestions arise are
Hall, DeVany, Ayala-Oramas, and Anderson.

A CRITIQUE OF ICC COSTING METHODOLOGY

One of the more serious difficulties with ICC methodology is
the failure to account for capacity utilization of plant and
equipment. It is based on the historical operating characteristics
of firms that reflect a capital equipment utilization that itself
resulted from ICC policies. In addition, ICC costs do not permit
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the separation of cost changes that result from changes in
factor prices; there is no way to sort cost changes by Causality.

Also, the methodology does not account for the value to the
firm which arises from regularity of service. Seasonal users of
trucking services may require large investments in motor carrier

equipment than shippers facing more uniform demand.

Costs from ICC Form A are average costs, and while some
regional adjustments are possible, if there exist joint or common
costs, average costs can't be determined with certainty because
this requires an (arbitrary) allocation of the joint costs.
Therefore, the average costs of particular movements can't be
determined except on an arbitrary basis. This also holds true for
the allocation of capital costs; these are not separated by the
accounting practices so they can be non-arbitrarily included in
average costs.

Joint and capital cost allocation, are among the most trouble-
some cost categories in trucking. To allocate capital costs or
joint costs, a general inventory and evaluation method is neces-
sary. Even if this were feasible--and it is not because of the
large number of firms in the industry--the results would be sensi-
tive to the choice of the accounting method.

Average cost data distorts the actual costs of several dif-
ferent types of service. For example, actual costs are usually
higher than average for small loads and average capacity utiliza-
tion, for irregular service, and for service with seasonal or
daily peaks. Actual costs are lower than average for multiple
shipments and truckload movements, regular traffic, and off-peak
movements. Because of the failure to account for capacity utiliza-
tion, acutal costs are distorted in ways that cannot always be
predicted a priori.

The ICC cost studies have often attempted to examine the
question of increasing returns to scales. Since increasing
returns imply decreasing long-run average costs, the usual
method is to examine the scale economies questioned by measuring
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the percent variable cost. The purpose of percent variable cost,
(defined equivalently either as incremental cost divided by total
cost, or ratio of marginal cost to average cost, or the elasti-
city of total cost with respect to a change in output) to measure
the returns to scale.

While total cost functions may be curvilinear, the ICC
assumes that cost functions are linear, and this implies that the
long-run cost function is a straight line with origin at zero. In
the short run, with fixed costs, the function may have a positive
intercept. (The intercept must be nonnegative because it would
otherwise imply negative fixed cost-a subsidy.) For linear func-
tions marginal cost is constant, independent of the output level,
equal to the slope of the function; average cost declines
continuously with the output level. In the short run, percent

variable cost will be equal, greater or less than one hundred,
depending on whether the intercept is positive or zero. In either
case, percent variable cost is variable cost and is not a function
of the level of output.

Because of these problems it is important to determine what
level of output is assumed for the cost under discussion. There-
fore, if average cost is to be measured or if cost is to be mea-
sured for some '"average'" level of output, it is important to
specify this level of output.

The Commission's cost methodology aggregated annual report
data from both large and small firms, to determine the percent
variable cost. By aggregating over firm size, considerable dis-
tortion is introduced, and it is not possible to discuss the
accurate measurement of percent variable cost without specifying
both average firm size and traffic density.

As Griliches notes, if an econometric (or accounting) cost
relationship is a good representation of true cost it must have
four characteristics:

1) It must be defined correctly.
2) The variables must be measured in relevant units.,
3) It must include all of the important variables.
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4) The excluded variables must be distributed randomly
about zero and uncorrelated with levels of included
variables.

No study has been carried out by the ICC Cost Section to determine
whether these criteria are satisfied.

There is also the problem of untested aggregation over out-
puts; for example, pickup and delivery, terminal operations and
line haul operations. What we would like to do is estimate the
long-run relationship between output and cost. For this purpose,
Cross-section data is preferred to time series because it is less
affected by short-run and transitory phenomena than time series.

If there exists a transitory and permanent part to cost,
there will be a bias in the elasticity estimates unless the tran-
sitory cost portion is extremely small. If it is not small the
estimated elasticity of output with respect to cost will be
biased downward.

In summary, the ICC methodology has seven major faults: (1)
It does not account for between-firm differences in capacity
utilization of plant and equipment; (2) It does not allow the
separation of changes in cost which result from changes in factor
prices; (3) It does not allow us to compute the value of regu-
larity of service to the firm. (4) It focuses principally on
average costs. (5) It does not deal with cost changes as network
density increases, or with the allocation of capital costs; (6)
The assumption of linearity imposes a straight line total cost
function on the data without any examination of whether or not
this assumption is correct; (7) It assumes separability. Variable
cost would likely be underestimated using standard ICC cost

methodology.
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5. THE DATA

Regulated motor carrier data has always posed a problem to
researchers because of its quality and availability. The ICC
annual report data is published in summarized, aggregate form (as
Part 7 of The National Transportation Statistics) without many of
the details desirable for economic analysis. This data is often
unavailable for several years after it is collected. The other
major source is TRINC's, which also publishes firm-level data but is
also aggregated excessively for many purposes. Many published
studies use TRINC's data simply because it is widely available and
easy to access. The American Trucking Associations publish Finan-
cial and Operating Statistics (F§O0S) for Class I regulated carriers
on a quarterly basis, but these data are also aggregated exces-

sively.

The ICC has prepared annual reports for Class I § II carrier
data in machine readable form since 1965. These data have not
always been easily accessible principally because: (1) There is
an enormous quantity of data; (2) The data processing character-
istics of the data are not consistent from year to year; and (3)
The computer tapes were not readily accessible physically because
of the expense of collecting and organizing them. Further, the
data are not systematically audited for accuracy so that in reading
the tapes it is impossible to discriminate between sources of
error. For example, it is common to update tapes by adding the
updated data at the end of the tape rather than with the records
being updated.

The data consist of a panel of data for 252 Class I, general
freight motor carrier firms that existed continuously during the
ten year period from 1965 to 1974, making 2520 observations per
variable. The study firms are also Instruction 27 (I-27) carriers,
which means that they derive 75 percent or more of their annual
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revenues from intercity freight operations. These firms are
required to report additional statistics on their operating
characteristics (such as number of truckload (TL) and less than
truckload (LTL) shipments) that are extremely useful in economic
analysis.

Because of the data problems, no previous study used time
series of cross-section (panel) data, although Klem used several
subsets of the 1974 Class I and II data; Friedlaender and Spady
used TRINC's data as did Ayala-Oramas.

Another obstacle to the use of the data is the change in
account definition from year to year. Between 1965 and 1973 there
were only minor changes in Motor Carrier Form A, but in 1974 Form
A was changed substantially. This required a major reconciliation
of the accounts to achieve comparability of data for 1965-1973
with that for 1974,

The factor price and output variables used to specify the
model were constructed from approximately 50 ICC accounts or line
items on the annual reports. The inputs are represented by factor
prices and the outputs are constructed from operating statistics.

SPECIFICATION OF THE COST FUNCTION

The translog joint cost function allows the specification of
functions with multiple inputs and outputs. Because the translog
functions requires numerous terms for each possible combination,
this can be burdensome as well as advantageous as it requires
large numbers of coefficients. For example, Table 3 shows the
various numbers of coefficients that would result by specifying
different quantities of inputs and outputs. The model has four
outputs and nine inputs, leading to 105 coefficients in nine total
equations (assuming symmetry).

The output variables are:

1. Q1 = number of truckload (TL) shipments--TL output.
2. Q2 = number of less than truckload (LTL) shipments--
LTL output.
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3. Q3
4. Q4

tons per day of pickup and delivery output.

#

tons of freight--terminal platform output.
The factor price variables are:

Wl = salaried, clerical and other labor wage
W2 = linehaul wage
W3 = pickup and delivery and terminal platform wage

1
2
3
4. W4 = other inputs not elsewhere classifed price
5. W5 = purchased transportation price

6

. W6 = owner-operator compensation (including tractor

rental)
7. W7 = materials--tires, oil, lubricant price
8. W8 = fuel price
9. W9 = capital services price.

The output variables were taken from Schedule 9003, while the
input prices were constructed in two ways. Labor categories use
wage rates constructed from expense and quantity data (person
hours worked) from Schedule 9002. The labor categories were
aggregated using a Divisia index of inputs that were divided into
the total factor expenditure WXy to estimate the wage rate.

Non-labor input variables present a more difficult problem
because there is no information available on quantity. The excep-
tion to this is fuel. Total fuel expenditures are available, and
the number of gallons of fuel used can be estimated by tallying
the federal fuel tax dollars and dividing through by the tax per
gallon. (Fuel tax expense - taXx rate x gallons, therefore, gal-
lons = fuel tax expense/federal tax rate.)

Factor prices are not available for the other category, pur-
chased transportation, owner-operators, tires, oil and lubricants
(materials) and capital services price. Leaving capital price
until last, we will discuss an alternative method to estimate

factor prices when quantities are unobservable.

Diewart has shown that either price or quantity indices with
highly desirable, or superlative to use his terminolgy,
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TABLE 3. NUMBER OF TRANSLOG COEFFICIENTS RESULTING FROM
VARIOUS COMBINATIONS INPUTS AND OUTPUTS*

Total Number of Coefficients = (m + 1) (m/2) (n+l) (n/2) +mn +m +n + 1

Total Number of Equations = Total Cost function + (n-1) factor share

equations
OUTPUTS INPUTS TOTAL SYSTEM
m n COEFFICIENTS EQUATIONS
1 4 21 4
1 6 36 6
1 8 55 8
2 4 28 4
2 6 38 6
2 8 48 8
4 4 45 4
4 6 66 6
4 8 91 8
4 9 © 105 9
4 12 153 12
* Assuming Symmetry which means that coefficient eij = eji. Since the
coefficients are interpreted as partical derivatives, the ij th must
equal the ji th by Young's Theorem (discussed in Section 1.0). These

numbers include all coefficients - the number actually estimated
can be reduced using Young's Theorem and imposing cost minimization
as a maintained hypothesis and further reduced if constant returns
can be imposed.
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properties may be estimated using a translog "aggregation' function.
(For a detailed description see Diewert, or Spady and Friedlaender).
We discuss aggregation by both the use of Divisia indices and
estimated factor prices; the two approaches are theoretically
equivalent.

The Divisia Index

The naive approach to aggregation is to add cost categories
together and divide by an aggregate sum of quantities to get an
"average'" factor price. This is inappropriate because of the average
factor does not accurately measure the true factor price or
quantity. What does "accurate'" mean? For a cost function,
accurate means one that gives identical measures of total factor
expenditure regardless of whether a factor price index or a factor
quantity index is constructed. For example, let

C; = g(h(Q),w) (5.1)

and

C, = 8(Q,h(wW) (5.2)
then the index is '"accurate" if and only if C, = CZ'

The appropriate index has the following properties:
1) 1If factor prices double, the index doubles
(and likewise for quantities).
2) The index number between any two periods is
independent of the choice of the base period.
3) The index must be independent of the units of
measurement of prices and quantities.

One class of functions with these desirable properties
are homothetic aggregation functions. (Homothetic functions
are monotonic transformations of homogenous functions.)

Suppose we need a factor price index, how is one constructed?
The necessary elements are:
1) total expenditures for a factor.
2) quantities of each of the subgroups to be aggregated
over time or (for cross section data) across firms or both.
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To get an index of the unobservable factor prices, we must
define a quantity index and divide factor cost (wiXi) by that index

Wi = w, Xy S )
i (5.3))
X. '

i

where actual Xi is unobservable.

The dependent variable in the factor share equations is the
share of that factor input in total expenses; wiXi/C = Mi'
The capital share equation was omitted because one equation must
be omitted to avoid a singular error matrix. The estimated
equations are shown in Table 10. The variables are in logarithmic
form. Each equation has the mean of each variable factor subtracted
from it. This is called mean-centering and defines the point of

approximation.

The coefficient restrictions are applied implicitly by
"omitting' a variable and subtracting the omitted variable from all
other variables in the'equation, which is equivalent to dividing
out of the logs.

The econometric factor price estimation has as the dependent
variable the percentage that a "micro" factor represents of total ex-
penditure in a micro-group. The specification for this procedure is*

*An often negiected component of production technology overtime is
technological change. Omission of technological change parameters
is a misspecification and leads to biases in parameter estimates.
Many production studies assume that technological change is Hicks
neutral and proceed to estimate technological change as a constant
exponential function of time. This means that (see Gollop and
Hnylicza) we can write,

X$ = X, e¥it, (A)
where X? = jth input in efficiency units
Xj = jth input in natural units
u. = rate of technological augmentation or

J change for jth input

t = time

(footnote continued.)

91




i™i = log Wi - AiT + log g (Qi) + e
wX
where
wiXi = factor input bill for factor estimated
m
wX = I w.X. all expenditure for a class of input

i=1 11 input to be aggregated

log W log of estimated factor price

Ai = rate of price diminution--the negative of the
rate of factor input technological change.

T time
g(Qi) = a translog--specified set of proxies for quantity,

The factor price estimate required is obtained by
exponentiating the intercept and factor.

That 1is we-AiT = exp(logﬁri - Ai logT)

Factor prices estimated in this manner are assumed to be
constant across firms as are the rates of price diminution.
Individual factor prices could be estimated for each firm and year
by specifying dummy variables. This was not done because of the
large number of dummy variables that would have to be estimated.
(It would require 2520 dummy variables to get a separate factor
price for each year and firm.) The estimation of the factor price
with the rate of price diminution gives variation across time but
not across firms., See Spady and Friedlaender (1977) or Diewert
(1976) for further discussion of this procedure. The price
diminution parameter--is discussed by Hnylicza. The procedure
suggested in Hnylicza is more complicated. It requires appending

*(Cont'd)
Technological change reduces the effective cost of the factor
inputs, so we may treat it as a cost reduction,

w¥ = w.e->‘jt (B)
J J

The rate of factor augmentation must equal the rate of effective
input cost reduction, the observed value of a factor share

X, = wEXE C

Wity T WIS ©
Since

- = >\_.

M3 j



TABLE 4. FACTOR SHARES

Share Symbol

1. Salaried Clerical, other M1l -
2. Line haul M2
3. Pickup and delivery,

terminal and platform M3
4. Other inputs, NEC M4
5. Purchased transportation M5
6. Owner operator Mé
7. Materials, tires, oil and

lubricants M7
8. Fuel M8
9. Capital M9
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a 'share' of technological change equation to the model set. The
procedure used here estimates factor price diminution outside the
main model by estimating each factor price in order to get the
rates of price diminution. Even though the estimated factor prices
were not used in every case, the price diminution factors were
used with the actual price when these could be computed.

Table 6 1lists the correspondences between the theoretical
functions specified in Section 1 and 2 and the estimated
functions. The theorectical sections use greek letters while the
econometric specification use English mnemonic equivalents (where
feasible). The independent variables themselves use their own
means as the points of approximation, although this is not ex-

plicitly in the econometric specification.

Appendix I describes the data from which the variables in the

models were formulated.
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TABLE 5.

DEFINITION OF OUTPUT AND FACTOR PRICE VARIABLES

Output Symbol Source
TL Shipments Ql Schedule 9003
LTL Shipments Q2 Schedule 9003
Ton per hour pick up
and delivery Q3 Schedule 9003
Tons, terminal-platform 04 Schedule 9003
Factor Price Symbol Source
Labor, salaried-clerical, Wl Constructed by Divisia Index
other
Labor, linehaul W2 Constructed by Divisia Index
Labor, pickup and .
delivery plus terminal- W3 Constructed by Divisia Index
platform
Other inputs not elsewhere Wa Estimated

classified (NEC)

Purchased transportation

© W5 Estimated

owner-operator

wé Estimated

materials, tires, oil

and lubricants w7 Estimated
Fuel W8 Observed directly
Capital WO Observed directly
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TABLE 6. COEFFICIENT SYMBOLS AND VARIABLES

Coefficient Symbol

k.4
Variable

intercept

2
1/2 w9

1/2 Q W,

1/2 Q, Wy
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TABLE 7. COMPUTATIONAL METHOD FOR OMITTED COEFFICIENT VALUES

ASSUMING MINIMIZATION

COST MINIMIZATION IMPLIES

l1. IRp. =1
BJ

. . =0
2 Zyj

. . =0
3 ij

CONSTRAINT IMPLIED BY OMITTING VARIABLE j AND
THEREOF

ALL COMBINATIONS

THEREFORE
m-1 .
] i=1
.‘.
%* * * * * * * -
Y11 Y15
*® * * -
Yo1 Yo ¥ * * Y54
* * -
Y31 Y33 Y33 ¥ * * ALY
Y Y Y Y * * * * Iy, .
41 42 43 44 43
Y Y Y Y y * * Yy
51 52 53 54 55 54
* * -
Yo  Ye2 Yoz Yoo Yes  Yes L5
Y1 Y720 Vi3 Yiu Yis o Yee  Ypy K LYy
Ye1  Ys2 Ye3  Ya, Yes  Ygg  Yey  Yes ~LYg3
. mm
Ivy LY LY, A LY 45 Y46 LYy, L3 ;G(iyij) =0

tStars indicate variables omitted due to Young's Theorem

(symmetry) so that 032 = 023.
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TABLE 8. CROSS PRODUCT COEFFICIENT RESTRICTIONS TO SATISFY
THE CONSTRAINT zpij =0

P11 P12 P13 P1g4 P15 Pig P17 P18 "IP15 = o

P21 P22 P23 P23 P25 Pag Pa7 Ppg ~IPpy =0
P31 P32 P33 P34 P35 P3g P37 P3g ~IP3y =0

Pa1 Pa2 P43 Payq Pys Py Pg7 Pyg “LPgy = O

since v,. = vy.,, , Ty.. = Iy..
ij ji ij ji

so the final implied coefficient value in the lower right

hand corner is the sum of the others previously calculated

sums so as to satisfy the constraint zYij =0
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" TABLE 9. COST MODEL ARGUMENTS
Econometric Specifications Theoretical Corresponsence Explanation
Al to A4 oy to 0y Dutput Coefficien
Bl to B4 Bl to 64 Factor Price
Coefficients
D11l to D44 Gi. Output inter-
J aocotion Coefficient
Gll to G99 oy g Factor Price
J Interaction
Coefficient
R1l to R49 p. . Output Factor
1J Price Interaction
terms
Ml to M9 Mi Factor Shares
LGl to LG4 log Qi Log of outputs
LWl to Lw9 log ¥y Log of factor
prices
LW1l.Wl to LW9.W9 log vy log w. Factor Price
] Interactions
LWl.Q1 to LG4.0Q4 log Q; log Qj Output interactior
Ql.Wl to Q4.W9 log Qi log Vo Output factor
price interactions
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6. RESULTS AND CONCLUSIONS

Several results are presented in this section: (1) The
estimates of factor prices and technological change rates; (2)
Joint estimates of the translog cost functions; and (3) Inferences
about the underlying technology implied by the estimated joint cost
function.

Since this presentation is lengthy we offer a preview of
those results:

(1) Class I motor carrier of general freight show no
evidence of system economies of scale;

(2) We accept the hypothesis of cost minimization;

(3) Separability (homotheticity) cannot be accepted so

that the production or cost functions such as the
Cobb-Douglas and CES are inappropriate descriptions

of technology in this industry.

Estimates of Factor Prices

Some factor prices are not observable, (as discussed in
Section 2.0) and, must therefore be estimated econometrically.
It is also necessary to estimate all of the factor prices to
obtain the rates of price diminution (the negative of the
technological change rate). Therefore, all factor prices were
estimated, even though not all estimates were actually employed
in the model,

The factor price estimation assumes that there is some
"micro" production function that processes ''micro' inputs,
converting them into the 'macro' (or actual inputs) that the
firm uses. This function may be treated as homothetic and
separable without loss of generality with respect to the overall
technology of the joint cost function.

Factor price estimation involves estimating an equation in
which the dependent variable is the percentage of cost in a micro
category and the independent variables are suitable proxies for
quantities of the variable. The estimated factor price is the

100



intercept of the equation, shown below.

The factor price estimating equation is

hi = lnw1 + ¢ (X) + ey (6.1)
where h is n-1
hi = wlxl/if1 wiXi (6.2)

L is the estimated factor price
¢$(X) is a vector of quantity proxies
and e is an error term.

The quantity proxies in ¢ are specified in translog form.
The equations were estimated simultaneously using FIML, and the
results are presented in Table 10.

The estimates of factor prices themselves were actually used
only in cases for which no prices could be observed, but the rate
of technological change was used in all cases. Therefore,
estimated factor prices were used for inputs: 4. Other expenditures
not elsewhere classified (NEC); 5. Purchased Transportation; 6.

Owner-Operators; 7. (materials) Tires, 0il, Lubricants; and 9. Capital

The price of capital was omitted from the estimation process,
to impose cost minimization implicity after cost minimization was
accepted in a likelihood ratio test.

Estimated Cost Function

The results presented in Table 11 were chosen from those
estimates with various parameter restrictions. The test for cost
minimization leads us to conclude that firms do minimize cost and
therefore the joint cost function is estimated with cost mini-
mization as a maintained hypothesis. Cost minimization is imposed
by deleting one factor price from the estimated equation; this is
equivalent to normalizing or dividing both sides of the equation
by that variable. Since these equations are log-linear, "dividing"
through means substracting the log of the omitted variable from the

remaining variables in the equation (including the dependent
variable). The coefficients of omitted variables are computed by I
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TABLE 10. FACTOR PRICE AND PRICE DIMINUTION ESTIMATES

+ _
logWi _ Ai
1. Salaried, Clerical, Other ++
Labor per ton mile .23125 -.00196
2. Linehaul Labor per ton mile .28332 .0057
3. ©Pickup & Delivery Terminal
Platform per ton .48434 .0062
4. Other Expenditures NEC
per ton mile .3964 .0002
5. purchased Transportation
per ton mile .17810 .0007
6. Owner Operator per ton mile .3942 .0004
7. Tire, oil, lube (materials)
per mile .1378 .0002
8. Fuel per mile .19015 .0003
9, Capital per ton mile .27351 .0008
System likelihood 63334.45

+All of the estimated factor prices and rates of price diminution

were reliably distinguishable fro
confidence level. m zero at above the .0001

++The negative value of the coefficie i i
L nt ind
in productivity over time. FESESS SRSt NS
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TABLE 11. JOINT ESTIMATES OF COST AND FACTOR SHARE EQUATIONS

Log likelihood function = 2670 No. OBS = 200
9 equations 105 coefficients
Coefficient | Standard Coefficient | Standard
Value Error Value Error

a, 16.2402 .0049 Y3 - .0006 .0011
a, .1085 .0043 Y37 -0715 .0011
q, 2483 0036 Y33 .3966 .0018
a3 L1243 .0016 Y41 - .1646 .0024
a, .5699 .0041 Y42 - .0l44 .0025
611 .1018 .0020 Y43 .3360 .0045
612 .2009 .0040 Y, .0036 .0043
699 .0703 .0259 Ys, - .0007 0025
531 - .1982 .0009 Y5 - .1076 .0027
S35 0251 R Y53 .2619 .0047
633 .0049 .0196 }'54 .3827 .0044
S41 -4382 -0006 Y55 .0174 .0095
842 - 22716 -0066 Y1 .0004 .0011
643 -0140 -0009 Yg2 - .0252 .0012
5, . 4480 .0021 Ye3 .5405 .0018
B, .1006 .0105 N .0020 .0017
8, .0582 .0007 Ygs - .0204 .0034
£, .3801 .0105 Yee 0142 .0006
B, .0702 .0008 271 .0080 .0007
Bs 1743 -0045 Y72 .0001 .0006
E, .0056 .0098 Y73 .0003 .0008
8, .01420 .0112 Y74 - .0061 .0010
Bg .0244 -0036 Y75 .0015 .0024
Eg .1700 -- Y76 .0107 .0015
1, .2053 .0027 Y97 1.628 .0008
Y21 .3074 .0007 Ye1 -0008 -0027
Yy, .0826 .0007 Y82 1.4742 -0029

Yg3 .0023 .0051




TABLE 11 (Cont'd)

Coefficient | Standard Coefficient [Standard
Value Error Value Error
Yas4 .1653 . 0049 DY) .0230 .0124
s .0314 .0106 P33 .0679 .0145
Yge .0423 .0008 &, .0668 .0085
Yg7 .5975 .0006 Fys 3.8966-E05| .0023
Yas .1014 .0404 Py 0114 .0040
Yo1 - .5600 - P34 .0002 .0007
Yg2 - 1.6500 - &g - .0304 .0120
Yg3 - 1.4655 — Pag .1460 --
You - .3729 -- 01 - .0278 .0175
Y5 - .5662 - 42 - .0191 .0241
Yog - .5645 - P43 .0296 .0374
Y97 - 4492 - %s .0198 .0298
Yo8 - 2.0856 - Py - .0192 .0094
Yogq 6.7681 -
P .0011 L0141 Pus - 0008 0156
£49 - .0006 .0012
2 | T 022 1020 Fug .0946 .0403
A3 - .0197 .0349 .
o4 - L0247 .0241 49 =077 -
As .0095 .0075
g .0013 .0013
A7 - .0006 .0011
fs - .0246 .0320
Ao .0829 -
1 .0003 .0039
0, - .0098 .0091
&3 - .0097 .0142
Pay .0078 .0070
Pys .0090 .0020
Pye .0070 .0034
Ry .0004 .0009
f8 - .0651 .0096
P29 .0601 -
Ry - .0075 .0046
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subtraction as explained in Table 7.

The computation of the coefficients of the omitted cross
factor price terms is illustrated in Table 8. These computations
are based on the requirement for linear homogeneity in factor
prices; this means that the cross and square terms y must sum to
zero Zy;, = 0. We can rearrange this requirement to apply to

J
groups of coefficients - the groups being the rows or columns of

the symmetric coefficient matrix. The estimated coefficients form
a lower triangular matrix and the symmetrical off-diagonal elements
are equal. The missing coefficients are calculated using the
requirement that the sum of each row or column must equal the
negative of the missing coefficient value. The final missing
coefficient is the value that sets the sum of the coefficients to
ZeTro,

Coefficient Interpretations

The intercept a,s represents the value of total cost evaluated
out the means of all variables while the o; terms are the co-
efficients of the output variables (or marginal cost evaluated at
the mean). All of these must be positive if the marginal cost is
of an output is positive. Marginal cost is evaluated at the mean of
each variable. They are equal to the log partial of the cost
function multiplied by average cost--since all variables other than
the output coefficient vanish at the mean. Also, the factor price
coefficients equal the estimated factor shares when the remaining
terms drop out.

The output-square and output cross-product terms show how
cost varies with output. If positive the cost function has the
traditional 'U' shape with respect to an output, while if negative,
they have an inverted 'U' shape. These output-square terms were
all positive indicating a 'U' shaped cost curve.

The output-factor price cross terms are reliably distinguish-
able from zero (as determined by a likelihood ratio test) and hence
the production technology is non-separable (non-homothetic).
Therefore factor intensitities will vary with the level of output.
Relating this to the isoquant map this means the isoquants are not
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evenly and uniformly spaced throughout the isoquant map, re-
flecting the fact that different levels of output require different
factor intensities. The shape of the isoquants also differs
throughout the production surface. (See Table 12,)

Summar

The industry does not enjoy significant economies of scale.
The structure of technology is non-separable.
Firms minimize cost.

Further Research

The findings presented here did not make use of the hedonic
regression technique or output adjustment equations, developed by
Friedlaender and Spady. It would be a significant addition to this
work to use this technique.

The characteristics of the networks of individual firms should
somehow be included in the hedonic cost functions. No data re-
presenting network characteristics is presently available but a
proxy, such as the number of states in which operations are carried
out, as might serve a proxy for network extensiveness. This can be
accomplished in future research, into the certificates of networks
authorized by the carriers. The ICC does have a centralized record
of the routes a carrier is authorized to serve so that this is not
a simple matter of using available information but requires a
laborious search of numerous operating certificates.

The estimates presented here are not divided by regions;
Friedlaender and Spady found that doing so makes a significant
difference in the estimates. Work has begun to classify the sample
carriers by TRINC's regions and the functions will be re-estimated.

There is some practical difficulty with identifying carriers

as operating in a given region, because the larger carriers may
have their operations scattered over several regions and have a
corporate headquarters in yet another region. Interregional
carriers, such as transcontinental carriers can be classified
separately but this does not eliminate the problem. The fact that
the regional dummy variables lead to significantly different
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parameter estimates indicates that some firms have different
technologies. Some classifying scheme based on degree of speciali-
zation in a particular technology might be more appropriate.

It was the philosophy of these estimates that pickup and
delivery and terminal platform activity were separate outputs. It
would be useful to test this view of the motor carrier firm by
treating terminal/platform and pickup and delivery activities as
variables in an hedonic regression.

No tests of alternative firm objectives were made, nor were
tests of the possible existence of firm-level regulatory effects
tested.
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TABLE 12. LIKELIHOOD RATIO TEST FOR

Log Likelihood

SCALE ECONOMIES

Unrestricted

Restricted

Result

2670.15

2672.39

accept

AND

LIKELIHOOD RATIO TEST FOR COST MINIMIZATION

Log Likelihood

Unrestricted

Restricted

Result

2076.15

2670.15

accept
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13.
14.
15.
16.
17.
18.

19.

APPENDIX I

ICC ACCOUNT RECONCILIATION

Arrow Transp. Co., Inc.

Auclair Transp. Inc.

Beacon Fast Freight Co. Inc. (NY Corp.)

Blue Line Express Inc.
Transportation Co. (A Corp.)
Coles Express

Fox & Ginn Inc.

Hemingway Transport

Intercity Transp. Co.

Lombard Bros. Inc.

ND Transportation Company

0ld Colony Transp. Co., Inc.

St. Johnsbury Trucking Company Inc.
Sanborn's Motor Express Inc.
Schuster Express Inc.

Shawmut Transportation Co. Inc.
Valleries Transportation Service Inc.
P. Wajer & Sons Express, Co., Inc.
H. P. Welch Co.

A A A Trucking Corp.

A P A Transport Corp.

Adley Express Co.

Allegheny Freight Lines Inc.
American Freightways Co. Inc.

Arrow Carrier Corp.
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26.
27.
28,
29,
30.
31,
32.
33,
34,
35.
36.
37,
38.
39,
40.
41.
42.
43,
a4,
45,
46.
47,
48,
49.
50.

51.

Associated Transport Inc.

B & F Motor Express Inc.

Bair Transport Inc.

Berman's Motor Express Inc.
Boss Linco Lines Inc.

Branch Motor Express Co.
George W. Brown Inc.

Burgmever Bros. Inc.

P, Callahan, Inc.

Canny Trucking Co. Inc.
Charlton Bros Transp. Co. Inc.
W. T. Cowan, Inc.

Dornson Transfer & Storage Co.
Dorns Transportation Inc. (NY Corp.
Eastern Freight Ways Inc.
Eazor Express, Inc.

Elliott Bros. Trucking Co. Inc.
Feuer Transportation Inc.
Follmer Trucking Co.

Fowler & Williams Inc.

Hall's Motor Transit Co.
Herman Forewarding Co.
Transport or Delaware Inc.
Inland Express Inc.

Inland Transportation Company

Miller S Motor Freight 1Inc.
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52. Modern Transfer Co. Inc.

53. Moon Carrier

54. Motor Freight Express Inc.

55. Mushroom Transportation Co. Inc.
56. Nelson Freightways Inc.

57. New Penn Motor Express Inc.

58. Oneida Motor Freight Inc.

59. Penn Yan Express Inc.

60. Pinter Bros. Inc.

61l. Preston Trucking Co., Inc.

62. snyder Bros. Motor Freight Inc.
63. south Bend Freight Line Inc.

64. Spector Freight Svstem Inc.

65. Surburban Motor Freight Inc.

66. Tobler Transfer Inc.

67. Trans American Freight Line Inc.
68. Transport Motor Express Inc. (Del. Corp.)
69. Transportation Service Inc.

70. Tucker Freight Lines Inc.

71. UT. S. Truck Co. Inc.

72, United Trucking Service Inc.

73, Western Transportation Co.

74. Western Trucking Co.

75. White Star Trucking Inc.

76. Wilson Freight Co.
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7. Wolverine Express Inc.

78.  pkers Motor Lines Inc.
79. Barnes Freight Line Inc.
80. Brown Transport Corp.
81.

Carolina Freight Carriers Corp.
82. central Motor Lines Inc.

83. central Truck Lines Inc.

84. colonial Motor Freight Line Inc.
85. ET & WNC Transportation Inc.

86. Ecklar-Moore Express Inc.

87. Estes Express Lines

88. Erickson Motor Express Corp.

89. Florida Alabama Transp. Co.

90. Georgia Highway Express Co.

91. Gordons Transports Inc.

92. Howard & Hall Co. Inc.

93. Burris Express Inc.

94. Hennis Freight Lines Inc.

95. Houff Transfer Inc.

96. M. R. & R. Trucking Co.

97. sSoutheasten Freight Lines Inc. (Ala Corp.)
98. McLean Trucking Company

99. Mercury Motor Express Inc.

100. 0l1d Dominion Freight Line

.101. osborn Transportation Company

117



102. overnite Transp. Co.

103. pPilot Freight Carriers Inc.

104. Riverside OR Lines Inc. (Fla. Corp.)
105. Southeastern Freight Lines Inc.

106. standard Trucking Co.

107. Tennessee-Carolina Transp. Inc; (Tenn Corp.)
108, Terminal Transport Co. Inc.

109. carolina Freight Lines Inc.

110. wilson Trucking Corp.

111. Admiral Merchants Motor Freight Inc.
112, Advance United Expressways

113. All-American Inc.

114, Badger Freightways Inc.

115, Barber Transportation Co.

116. Brigos Transportation Co. (Minn Corp.)
117. Mercury Motor Freight Inc.

118, Chippewa Motor Freight Inc.

119. Clairmont Transfer Co.

120. Fore Way Express Inc.

121, Gateway Transp Co. Inc.

122. Glendenning Motorways Inc.

123, Gross Common Carrier Inc.

124, Hart Motor Express Inc.

. 125, Midwest Motor Express Inc.

126. Wisconsin Truck Lines Inc.
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127.
128.
129.
130.
131,
132.
133,
134,
135.
136.
137,
138,
139,
140.
141,
14z.
143.
144,
145.
146.
147,
148.
149,
150.
151.

Motor Transport Co.

Murphy Motor Freight GHT Lines Inc. (Minn Corp.)

Werner Continental Inc.

Witte Transportation Co.

Byers Transportation Co. Inc.
Campbell Sixty-Six Express Inc.
Capital Truck Lines Inc.
Chicago-Kansas City Freicght Line Inc.
The Chief Freight Lines Co.
Churchill Truck Lines Inc.
Crouch Freight Systems 1Inc.
Crouse Cartage Co.

Darling Transfer Inc.

Frisco Transportation Co.
Graves Truck Line Inc.

H & W Motor Express Company
Manley Transfer Co. Inc.
Mid-American Lines Inc.
Middlewest Freightways Inc.
Riss International Corp.

Alamo Express Inc.

S-Best Freight System Inc.

Brown Express Inc.

Central Freight Lines Inc.

Curry Motor Freight Lines Inc.
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152. curry Motor Freight Lines Inc.
153. Herder Truck Lines Inc.

154. Jones Truck Lines Inc.

155. Mercer Motor Freight Inc. (Del Corp.)
156. Mercury Motors Inc.

157. Lines Inc. (Okla Corp.)

158, Mistletoe Express Service
159, Red Arrow Freight Lines Inc.
160, Red Ball Motor Freight Inc.
161, Carolina Motor Freight Line Inc.,
162. Stern Motor Transport Inc.
163, Sourtwestern Transp. Co.

164. Strickland Transp Co. Inc.
165. T I M E-DC Inc.

166. Texas-Oklahoma Express Inc.
167. Pacific Motor Transport Co.
168. Garrett Freightlines Inc.

169. IML Freight Inc.

170. Illinois-California Express
171. Milne Truck LInes Inc.

172. Navajo Freight Lines Inc.
173. Ringby Truck Lines Inc.

174, Rio Grande Motor Way Inc.
175. Salt Creek Freightways

176. Cherokee Freight Lines (Calif Corp.)
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177. colonial Motor Freight Lines Inc.
178. consolidated Freightways Corp. of Del.
179. pelta Lines Inc.

180. pi salvo Trucking Co.

181. Elsen Freight LInes, Inc.

182. pracific Intermountain Express Co.
183, smith Transportation Co.

184. sterling Transit Co. Inc.

185. Thunderbird Freight Lines Inc.
186. Transcon Lines

187. wWestern Gillette Inc.

188, Red Star Express Lines

189. Reisch Trucking & Transportation Co. Inc.
190. sService Transp. Co.

191. Smith & Solomon Trucking Co.

192. Smith's Transfer Corp.

193, Tose Inc.

194. Ward Trucking Corp.

195. Wooleyhan Transport Co.

196. A & H Truck Line Co.

197, Advance Transportation Co.

198, BAmerican Transit Lines Inc.

199. Anderson Motor Service Inc.

200. Be-Mac Transport Co. Inc.

201. Loudon Motor Freight Inc.
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202. Blue Arrow-Douglas Inc.

203. Brady Motorfrate Inc.

204. Freight Lines Incorporated

205. Central Transport Inc.

206. Centralia Cartage Co.

207. Checker Express Co.

208. Cleveland, Columbus & Cincinnati Highway Inc.
209. Commercial Motor Freight Inc.
210. Commercial Motor Freight Inc. of Ind.
211. Consolidated

212. Cook Motor Lines Inc.

213. Cooper-Jdarrett Inc.

214, Dohrn Transfer Co.

215, Duff Truck Line Inc.

216. Eastern Express Inc.

217. Ellis Trucking Co. Inc.

218. Express Freight Lines Inc.

219, General Expressways Inc.

220, Hajek Trucking Co. Inc.

221, Herriott Trucking Co. Inc.

222, Hollard Motor Express Inc.

223. R C & D Motor Freight Inc.

224. Inter-City Trucking Service Inc.
225. Interstate Motor Freight System

226, Jones Transfer Co.
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227. Kain's Motor Service Corp.
228. Knox Motor Service Inc.

229, Liberty Trucking Co.

230. Long Transportation Co.

231. povelace Truck

232. y L Mead Inc.

233. Mohawk Motor Inc.

234. Morrison Motor Freight Inc.
235. Motor Express Inc.

236. Motor Freight Corp. (Indiana Corp.)
237. wNational Transit Corp.

238. wNighthawk Freight Service Inc.
239. The 0-K Trucking Co.

240. ogden & Moffett Co.

241. parker Motor Freight Inc.

242. pPic-walsh Freight Co.

243. Putnam Transfer & Storage Co.

244, cCcarrier Unknown

245. The Reinhardt Transfer Co.
246. Renner's Express Inc.

247. George Rimes Trucking Co.
248. PRoadway Express Inc.

249. Rooks Transfer Lines Inc.
250. Sscherer Freight Lines Inc.
251. short Freight Lines Inc.

252. Earl C Smith Inc.
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APPENDIX II
DATA, RECONCILIATION

Class I Motor Carriers of Properties Form A
Keyed to Pre-1974 Accounts

Title and Schedule
Number Line Acct. No. Pre-1974

(1200) Carrier

Operating
Property
Land 1 1211 1201
Structures 2 1213 1210
Revenue Equipment 3 1221 1220
Service Cars and 4 1223 1230
Equipment
Shop and Garage 5 1233 1240
Equipment
Furniture and 6 1235 1250
Office Equipment
Miscellaneous 7 1237 1260
Equipment
Improvements to 8 1241 1270
Leasehold
Property '
Undistributed 9 1243 1280
Property
Unfinished 10 1245 1290
Construction
Total 11 sum 1-10
Carrier Operating 12 1251 1300
Property Leased
to Others
Grand Total 13 sum 1-12
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Title and Schedule
Number

Carrier Operating
Leased to Others

(126Q) Carrier Operat-

ing Propert

Leased to

Others (Total)
Property Used in

.Other than Car-
rier Operations

(1220) Revenue Equip-
ment Owned

Total Trucks
Truck Tractors
Total Semi-Trailers
Total Full Trailers
Other Revenue
Equipment
Total

(3000) Operating
Revenues

Freight Revenue
-common Carriers
Freight Revenue
-contract Carriers
Freight Revenue
-cartage
Interlining
Other Revenue
Total

(4000) Operating
Expenses

Equipment
Maintenance
Office and Other

Expenses

Line

(< N7, I S FOR X

Acct. No.

125

1260
1261

1220

3100
3200
3300

3400
3900

4110

4246
4296
4346
4396
4516
4526

Pre-1974

1400

1220

3100
3110
3120

3130
3900

4110
4120

1220

Same
Same
Same

Same
Same

4100
4120



Title and Schedule
Number Line Acct. No.

Office and Other 4536
Expenses 4546
(Continued) 4556
: 4596

4616
4666
4676
4696
4716
4726
4736
4766
4776
4786
5126
5526

LH Repairs and Ser- 4241
vicing - 4341
4521
4531
4541
PD Repairs and Ser-
vicing PD sum 4242
4342
4522
4532
4542

LH Tires and Tubes 4151

4552
PD Tires and Tubes

Transportation 4111

Supervision 4112

4121

4122

4132

4132

4211

4212

4311

4312

Office and Other 4291
Expense
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Title and Schedule .
Number Line

Other Transporta-
tion Expense

Line haul
Labor, Drivers
§ Helpers

Pick up and delivery, Labor,

Employees Wel-
are Expense
Line haul, Fuel, .
Pick up and delivery, Fuel,
Line haul, 0il etc.

Pick up and delivery, 0il etc.
Equip. Rents W.
Driver
Equip. Rents
W.0. Driver
Other Purchased
Transportation

Equip. Rental Pick up and delivery
W. Driver

Equip. Rental Pick up and delivery
W.0. Driver '

Other Purchased T.

Pick up and delivery

127

Acct. No.

4292
4391
4392
4591
4592
4611
4612
4661
4662
4671
4672
4691
4692
5121
5122
5521
5522
4221
4251
4321
4351
4222
4252
4322
4352
4401
4402
4511
4512
4521

4522
5411

5421
5437
5441
5451
5461
5471
5412

5422
5432
5472
5472
5482



‘Title and Schedule
Number Line Acct. No.

(4000) Terminal
Expense sum 4113

Supervisory 4114

Salaries 4115

4123

4124

4125

4133

4134

4135

Salaries § Fees 4213

Billing § 4313

Collecting 4653

Other Office 4214

Employees 4215

4314

4315

Office and Other 4244

Expenses

Other Terminal

Expense 4245

4515

4525

4535

4545

4555

4594

4595

4613

4614

4615

4663

4664

4665

4673

4674

4675

4693

4694

4695

4715

4725

4735

4765

4775
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Title and Schedule _
Number Line

Other Terminal
Expense
(Continued)

Total Expense

(9002) Officers,
Directors

Employees Ser-
vice and Com-

pensation -

Carriers of

Frelg t

A. Classification of
Employees and Their
Compensation

(9003) Operating
tatistics
Intercit s
Carriers of
Freight

9005) Trucks and
Tractors in

Intercit ’
Revenue Service
9006) Percentage Dis-
tribution of
Intercity Traffic

.= Common Carriers
-.0of Property

100) Comparative State-
ment ot Financial
Position

13
Total Current assets sum

Acct. No.

4785
5123
5124
5125
5523
5524
5525

4000

All

All Including 127 statistics

All

All

100

1020

1030

1110
1120
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Title and Schedule

Number Line Acct. No.
Total Current Assets 1130
{Continued) 1140
: 1160
Total Tangible 21 1300

Property 22 1300A
24 1340
25 1340A
26
27

Investment

Securities §

Advances 36
Deferred Charges 40

Total Assets 41
110 Copies
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